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Abstract—The next frontier in communications is teleoperation
– manipulation and control of remote environments. Compared to
conventional networked applications, teleoperation poses widely
different requirements, ultra-low latency (ULL) being the pri-
mary one. Teleoperation, along with a host of other applications
requiring ULL communication, is termed as Tactile Internet (TI).
A significant redesign of conventional networking techniques is
necessary to realize TI applications. Further, these advancements
can be evaluated only when meaningful performance metrics are
available. However, existing TI performance metrics fall severely
short of comprehensively characterizing TI performance. In this
paper, we take the first step towards bridging this gap. To
this end, we propose a method that captures the fine-grained
performance of TI in terms of delay and precision. We take
Dynamic Time Warping (DTW) as the basis of our work and
identify whether it is sufficient in characterizing TI systems.
We refine DTW by developing a framework called Effective
Time- and Value-Offset (ETVO) that extracts fine-grained time
and value offsets between input and output signals of TI. Using
ETVO, we present two quantitative metrics for TI – Effective
Delay-Derivative (EDD) and Effective Root Mean Square Error.
Through rigorous experiments conducted on a realistic TI setup,
we demonstrate the potential of the proposed metrics to precisely
characterize TI interactions.

I. INTRODUCTION

Tactile Internet (TI) [1] is irrefutably at the forefront amid
several emerging technological innovations that are foreseen
to revolutionize future industries and the lifestyle of humans.
The crux of TI is its potential to enable teleoperation -
transportation of physical skills of humans for manipulation
and control of remote environments. Sensory feedback, in-
cluding vibrotactile, kinesthetic, audio, and video modalities,
transmitted via TI, should provide a feeling of collocation
between geographically distant locations. These can facilitate
humans to remotely perform activities in uninhabitable or
resource-constrained locations as if they are physically present
there. TI is not just limited to teleoperation applications such
as telesurgery, remote disaster management and telerepair of
machinery, but also the other sectors like education, health,
and manufacturing [2].

TI applications are significantly different from the existing
real-time applications served by the Internet. The transmission
of tactile sensor data and the sensory feedback have latency
requirements in orders of magnitude lower than the current
real-time applications on the Internet. Furthermore, some TI
applications would also need ultra-high reliability, which is
not yet supported on current networks. Thanks to the vision
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Fig. 1. A schematic representation of an E2E TI application.

and recent advancements in the field of 5G, particularly
in the context of ultra-reliable, low-latency communication
(URLLC), TI will benefit enormously [3]–[5].

As with real-time applications on the Internet, objectively
measuring the quality of a session is important for several
reasons: for adapting session quality based on network dy-
namics, estimating the quality of a session a priori (which
is important before executing mission-critical applications),
developing and benchmarking of new solutions at various
layers of the protocol stack including application layer. Unlike
the real-time applications on the Internet today, TI applications
are complex due to the active involvement of humans in the
entire control loop. However, it is imperative to establish
objective metrics for measuring and comparing TI session
performances.
Measuring TI performance. For fine-grained performance
analysis, a TI system should be evaluated based on how
quickly and accurately it can reproduce actions at the remote
end. Hence, it is crucial to determine the degradation it
introduces in terms of time and value collectively. While
Quality of Service (QoS) metrics, such as latency, reliability,
and throughput, are known to characterize real-time network
applications well, they fall short for TI applications. For
instance, a TI solution with an average latency of 15 ms is not
necessarily inferior compared to another with 10 ms average
latency. This is because the former could be intelligently
delaying the signals to avoid over-provisioning of resources
when the human perception is less sensitive to latency; for
example, in case of medium dynamic environments [6]. Sim-
ilar arguments can be constructed for other QoS metrics. On
the other hand, literature provides several works that propose
root-mean-square error (RMSE) based Quality of Experience
(QoE) metrics for qualitative performance evaluation of TI
[7], [8]. Essentially, RMSE is not designed to extract time
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and value offsets separately. Time offset is the delay variations
due to network and value offset may be due to noise or packet
loss (inducing loss of data). We demonstrate this limitation in
Figure 2. While it is easy to observe that among y1 and y2,
the profile of y1 is closer to x due to the presence of the
dominant peak, the RMSE of y1 is 19 % higher than that of
y2. Hence, the QoE metrics do not always indicate close to
real performance of TI.

The lack of a framework for performance characterization of
TI at a fine-grained level severely impedes the overall progress
of TI. This forms the primary motivation for this work.
Our contributions. Our approach is to devise a method that is
capable of extracting time and value offset between the input
and output signals of TI. The strength of this approach lies
in the fact that it can be applied to any end-to-end TI system
(starting from sensors on one end all the way to the actuators
on the other end) in a manner that is agnostic to the TI
modules. We take Dynamic Time Warping (DTW), a common
method for determining sample-wise similarity between two
signals, as the starting point for our work. Our contributions
in this work are as follows.
• We present a detailed discussion on DTW in character-

izing TI sessions and show where we can further use it
for TI applications.

• We present a concrete mathematical framework that we
call Effective Time- and Value-Offset (ETVO) that extract
time and value offset between input and output signals of
a TI system, which hitherto was impossible.

• Based on ETVO, we propose two quantitative metrics
– Effective Delay-Derivative (EDD) and Effective RMSE
(ERMSE) that can jointly characterize the TI system in a
fine-grained manner.

• Through experiments conducted on a realistic TI setup,
we demonstrate the efficacy of the proposed method in
supporting the characterization of a TI session close to
real.

The remainder of the paper is organized as follows. We
review the literature for potential performance metrics for TI
in Section II. We then provide a brief overview of DTW
and its insufficiency specifically for characterization of TI
interactions in Section III. We present the complete design of
the proposed performance metrics in Section IV. In Section V,
we describe the experimental setup, and present our findings
in Section VI. Finally, we state our conclusions and future
directions in Section VII.

II. RELATED WORK

A. TI performance metrics

Standard QoS metrics have been extensively employed, and
several QoE metrics have been devised for evaluating TI
systems. In this section, we present an overview of these.

1) QoS: Traditional QoS metrics for network performance
include latency, jitter, reliability, and throughput. Several mod-
ular designs of TI systems use QoS for characterizing TI
performance. While Admux, an adaptive multiplexer for TI

x
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y2

RMSE(x, y1) = 3.294501

RMSE(x, y2) = 2.776762

Fig. 2. Demonstration of wrong conclusions drawn by RMSE although the
shapes of x and y1 are more similar than the shapes of x and y2. The abscissa
has units in time and the ordinate in amplitude of the signal.

proposed by Eid et al. [9], uses all of the above metrics, the
multiplexing scheme by Cizmeci et al. focuses on throughput
and latency [10]. Hinterseer et al. [11] proposed a haptic codec
that focuses on reducing the application throughput. The codec
is based on perceptual Deadband, where packets are not sent
if the changes are below the level of human perception. The
congestion control scheme by Gokhale et al. [12] aims to
contain latency and jitter within their permissible QoS limits.
Further, a string of works has emerged recently that attempt
to address the ULL requirement of TI by leveraging the
advancements in the field of 5G networks. The works in [13]–
[15] provide a detailed discussion on the vision and progress
in this direction. While QoS metrics play a vital role in
characterizing the network performance, they are insufficient
for comprehensive characterization of TI, as described in
Section I.

2) QoE: Subjective QoE metrics aim to capture the quality
of teleoperation by having the human users subjectively rate
their experience. A couple of works that adopt this approach
include [8], [16]. Since this method is cumbersome and
resource-intensive, objective QoE metrics that estimate the
quality of teleoperation as experienced by the human controller
have also been designed. Hinterseer et al. [11] exploited the
idea of human perception having a logarithmic relationship
with the haptic stimulus. A framework was developed to
validate this by using the traditional Peak Signal-to-Noise
Ratio (PSNR) of the reconstructed haptic signal as the QoE
metric. Later, Sakr et al. [17] introduced Haptic Perceptually
Weighted Peak Signal to Noise Ratio (HPW-PSNR) that is
aware of human insensitivity to Deadband of the haptic signal,
the idea initially presented in [11]. Chaudhuri et al. followed
up on this to propose Perceptual Mean Square Error (PMSE)
that maps MSE to the human perceptual domain [7]. Re-
cently, Hassen et al. proposed the Haptic Structure SIMilarity
(HSSIM) index to improve the objective estimation of human
perception. HSSIM extracts the similarity between original and
reconstructed haptic signals. All of the above metrics are based
primarily on RMSE, which works by combining degradation
in both time and value domains.



B. Signal similarity metrics

Determining the similarity between two signals is an age-
old problem in the signal processing domain and has been
extensively researched due to its numerous applications, such
as speech and gesture recognition [18]. In this section, we
discuss some of the techniques devised for this purpose and
examine their applicability in extracting time and value errors.
Cross-correlation computes the time-offset (delay) between
the two signals that maximizes their dot product [19]. It
is well known that shared networks usually manifest highly
non-deterministic and time-varying characteristics. Hence, a
constant delay is an incorrect choice for representing the
entire TI characteristics. Another popular method known as
Dynamic Time Warping (DTW) exists for signals encountering
a time-varying delay. DTW conducts an exhaustive search to
achieve sample-wise matching between the two signals in a
manner that minimizes the cumulative Euclidean distance [20].
It provides an extremely useful construct in determining how
similar two signals are. Since in the case of teleoperation,
input and output signals are expected to be similar, our
problem is to find out how two similar signals are different.
DTW falls short of achieving this objective of TI. Several
follow-up works on DTW exist, with each of them attempting
to outperform DTW in one or more aspects. The most widely
recognized ones include Edit Distance on Real sequences
(EDR) [21], Edit distance with Real Penalty (ERP) [22], and
Longest Common Sub-Sequence (LCSS) [23]. However, they
manifest the inherent characteristics of DTW and hence are
unsuitable for TI as will be detailed in the following sections.
We discuss DTW in detail in the rest of the paper as it forms
the basis of the ETVO design.

III. DTW: BACKGROUND AND ANALYSIS

In this section, we present the necessary mathematical back-
ground for DTW and analyze its shortcomings in addressing
the stated objectives of this work. DTW constructs a warp path
that indicates a sample-wise mapping between two time-series
that minimizes their cumulative Euclidean distance.

A. Mathematical Representation

Let f̃ and g̃ denote the N -length discrete time-series cor-
responding to input and output signals, respectively. Hence,
f̃ , g̃ ⊂ RN . Let W̃ denote the set of all possible warp paths
between f̃ and g̃, where a warp path represents the sample-
wise alignment. Let the (k+1)-th point of a warp path w̃ ∈ W̃
be denoted as w̃(k) = (w̃0(k), w̃1(k)), where w̃0, w̃1 ⊂ NK

and K ∈ [N, 2N−1]. For example, the warp path in Figure 3 is
given as [(0,0), (1,0), (2,0), (3,0), (4,1), (5,2), ...]. Essentially,
w̃0 and w̃1 return the indices of f̃ and g̃, respectively.

The entries in w̃ ∈ W̃ must meet the following conditions:

1) Monotonicity and continuity:

w̃0(k) ≤w̃0(k + 1) ≤ w̃0(k) + 1,

w̃1(k) ≤w̃1(k + 1) ≤ w̃1(k) + 1.

f̃

g̃

I II III IV

I II III IV

Fig. 3. Insufficient of sample-wise alignment of DTW. The solid lines indicate
the input and output signals, and the dashed lines indicate the alignment
between the samples.

2) Boundary:

w̃(0) = (0, 0), w̃(K − 1) = (N − 1, N − 1). (1)

DTW chooses the warp path that gives the minimum cumu-
lative distance between f̃ and g̃. Taking the squared Euclidean
Distance as the distance metric, as recommended in [24], we
get the minimum cumulative distance computed by DTW as

DTW(f̃ , g̃) = min
w̃∈W̃

K−1∑
k=0

δ̃(w̃(k)), (2)

where δ̃(w̃0(k), w̃1(k)) = (f̃(w̃0(k))− g̃(w̃1(k))2.
The computation of DTW(f̃ , g̃) is carried out as follows:

1) Populate a cumulative distance matrix C̃ ⊂ RN×N .
Every point in this matrix gives a value indicating the
cheapest path to that point from the start. Every element
is given by,

C̃[i, j] = (δ̃(i, j))+min


C̃[i, j − 1],

C̃[i− 1, j − 1],

C̃[i− 1, j]},
∀i, j ∈ [0, N−1].

(3)
2) Backtrack from C̃(N − 1, N − 1) to C̃(0, 0) to construct

the warp path w̃, where,

w̃(K̃ − 1) = (N − 1, N − 1), and

C̃[w̃(k − 1)] = min{C̃[w̃(k)− d]},
∀d ∈ {(0, 1), (1, 0), (1, 1)}. (4)

The time complexity of DTW is O(N2), although several
algorithms for speeding up the computations exist [18], [25],
[26].

B. Insufficiency for TI applications

We now move to investigate the characteristics of DTW
that prohibit it from being readily used for TI performance
evaluation in terms of time and value errors. These should not
be interpreted as limitations of DTW since DTW has not been
designed for the question at hand.
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Fig. 4. Illustration of extending the input sequence by M − 1 samples to
avoid the start and end artefacts in ETVO.

1) Boundary conditions cause unrealistic artifacts: DTW,
which measures the similarity between two sequences, is
extremely useful for sequences classification problems like
correlation power analysis, DNA classification, and notably,
speech recognition. In the latter, DTW can be used to correctly
recognize a word even when spoken at different speeds or
pitches. For achieving this, DTW assumes that every sample
in one sequence is related to at least one sample in another
sequence. While the boundary conditions in Equation (1)
ensure that the extreme ends of the sequences are invariably
aligned with each other, the monotonicity and continuity
conditions ensure that none of the other samples in either
sequence is skipped. Figure 3 illustrates the two conditions
in action. Segments ‘I’ and ‘IV’ show how the boundary
conditions lead to start and end artifacts. On the contrary,
for TI applications, this assumption does not hold good as
we expect some samples in the ideal signal to be missing or
distorted in the observed signal. Instead of calculating how two
sequences are similar, we want to calculate how the output is
different from the input, where differences due to time or value
offsets are distinguished.

2) Unconstrained delay adjustments: Since the objective
of DTW is to find the best match between two sequences
by minimizing the cumulative the Euclidean distances, as
shown in Equation (2), delay adjustments are no concern for
DTW. In practice, this means that in pursuit of picking the
minimum Euclidean distance, DTW compromises on the delay
adjustments. Indeed, for applications like speech recognition,
this is a desirable property, as differences in delay do not
matter when identifying words spoken. However, this is unac-
ceptable for TI, as delay and delay adjustments cause more
significant degradation in performance than noise in most
cases. Examples are presented in Figure 3. In segment ‘II’,
the time derivative of both sequences is low, so that small
differences cause large fluctuations in delay. In segment ‘III’,
one can see a large number of small changes that lead to minor
improvements.

In the pursuit to identify similar sequences, DTW aims for
the highest similarity it can find. It has been proven that DTW
achieves its stated goal optimally [20]. As a consequence,
the delay changes are not necessarily recognized at the time
instants the real delay changes. In most instances, the changes
in delay happen earlier. Multiple examples can be found in
Figure 3. Segments ‘I’ and ‘IV’ start with an adjustment of
delay, even though the changes are made toward the end of
the corresponding segments. At the start of Segment ‘II’ there
is a large delay change a few samples before a small peak that
causes the change.

In order to resolve the above issues and design suitable per-
formance measures for TI, we perform substantial refinements
to DTW as we describe in the next section.

IV. DESIGN OF QUANTITATIVE METRIC

In this section, we begin by presenting the mathematical
foundation of Effective Time- and Value-Offset (ETVO) frame-
work that sets the stage for proposing the two quantitative
metrics for TI. We then move to introducing the metrics – Ef-
fective Delay-derivative (EDD) and Effective RMSE (ERMSE).

A. Design of ETVO framework

We now discuss our refinements for resolving the previously
discussed issues of DTW for TI applications.

1) Relaxation of boundary conditions: Let f and g denote
slices of the input and the output signals, respectively. For ease
of explanation, we use the same notations as in DTW, however,
without the accent (˜ ) to denote the ETVO counterparts. We
consider a range of possible values for sample delays. The
minimum delay is ∆Tmin ∈ R, and the maximum delay is
∆Tmax ≡ ∆Tmin +MT , where M ⊂ N+, and T the sample
period. Let N denote the length of g. Hence, f should be of
length N+M−1. If the first sample of g is at t = 0, then the
first sample of f [k] should be at t = −∆Tmin − (M − 1)T .
This is illustrated in Figure 4.

Let W ⊂ NN denote the powerset of possible warp paths
to align the output g onto the input f . The optimal warp
path is denoted as w ∈ W, where w[k] indicates that g[k]
corresponds to f [k − w[k]]. We define ETO as the sample-
wise time-offset corresponding to the alignment between g
and f . ETO can be derived directly from the warp path and is
expressed as

ETO[k] = ∆Tmin + w[k]. (5)

We define the Cumulative Distribution Matrix as C ⊂ RN×M ,
where the x-axis indicates the sample index of g[k], and the y-
axis is the corresponding ETO. This is illustrated in Figure 5,
wherein the value at each entry of C indicates the cumulative
cost of getting to that point. This is similar to the DTW
counterpart C̃ defined in Equation (3) except that the y-axis
here denotes the ETO. The propagation through C is

C[i, j] = δ(i, j) + min


C[i− 1, j],

C[i− 1, j − 1],

C[i, j + 1],

where

δ(i, j) ≡ (g[i]−f [i−j+M−1])2,∀i ∈ [0, N−1], j ∈ [0,M−1].

The three directions for calculating C correspond directly
to the three directions in DTW as defined in Equation (3). In
one step of g[k], the delay can go down multiple steps, but
can only go up one step at a time. For this translated system,
the monotonicity and continuity condition is given as

0 ≤ w(k + 1) ≤ w(k) + 1.
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Fig. 5. The squares indicate all the values that need to be considered to
calculate the optimum for the value in the white square. Gray indicates that
the optimal value for that spot is already calculated. Dark gray indicates the
cheapest source to get to the white square for three different methods. These
are the only squares that need to be checked

This translation step accomplishes two things. Firstly, this
structure is intuitively appealing for reporting time and value
offsets for each output sample. Secondly, unlike in DTW,
the search space does not scale quadratically with the sig-
nal length. Limiting the search space reduces the memory
requirements and accelerates the algorithm. With the new
foundation in place, we can prevent the start and end samples
to have zero delay. The first column of C is initialized as
C(0, ∗) = [0]M . Every starting delay is equally expensive. To
remove the ending artifact, we let the last sample of ETO be
chosen as the cheapest option, so that

C(N − 1,w[N − 1]) ≤ C(N − 1, j), ∀j ∈ [0,M − 1].

2) Constraining delay adjustments: In order to mitigate the
issue of unconstrained delay adjustments in DTW, we come up
with substantial refinements to its design. First, let us define
what a delay adjustment is in the context of ETVO. It is the
change in estimated delay per unit time. If multiple changes of
the same type happen consecutively, we treat them as a single
change of the cumulative magnitude. Recall that the diagonal
arrow and down arrow represent an increase and decrease is
delay, respectively. The dark grey squares in Figure 5 indicate
this.

In the following, we present the mathematical foundation
behind cumulative distribution matrix C and describe the
rationale behind the penalties.

C→[i, j] = [i− 1, j] (6)

C↓[i, j] = min
k⊂N+

{
C[i, j + k]

+

k−1∑
l=1

δ(i, j + l) + kPprop + Pfixed

} (7)

C↗[i, j] = min
k⊂N+

{
C[i− k, j − k] +

k−1∑
l=1

δ(i− l, j − l)

+ kPprop + Pfixed

}
.

(8)

For every delay adjustment, we introduce two variables – Pfixed
and Pprop, as shown in Equations (7) and (8). These correspond
to fixed penalty for every delay adjustment and penalty pro-
portional to size of the delay adjustment, respectively. Pfixed

! %

! %

! %

! %

C↓ < min(C→[j]− Pfixed, C↗[j])

C↗[j] < min(C→[j]− Pfixed, C↓)

C↓ > C→[j]

C↗[j] > C→[j]

C→[j] = C↓ + Pfixed + Pslack
D[i, j] = idx↓

C→[j] = C↓ + Pfixed + Pslack
D[i, j] = idx↓

C↓ = C→[j]

idx↓ = j

C↗[j] = C→[j]

idx↗[j] = j

C↗[j + 1] = C↗[j] + δ[i, j] + Pprop

idx↗[j + 1] = idx↗[j]

C↓ = C↓ + δ[i, j] + Pprop

C→ = C→ + δ[i, j]

j ≥ 0

i < N

j = M − 1
C↓ =∞

C↗[0] =∞

i = i+ 1 j = j − 1

!

%

!

%

finishstart

D = [0]M×N

C↗ = [∞]M

C→ = [0]M

i = 0
idx↗ = [0]M

idx↓ = 0

Fig. 6. Flowchart of the algorithm that finds the optimal way of traversing
the delay, given the constraints specified for ETO.

affects the number of delay adjustments, and Pprop affects
the magnitude of each adjustment. Together, these penalties
suppress the delay adjustments estimated by the algorithm. The
variable Pprop balances between time and value errors. A high
Pprop reduces the time error and increases the value error, and
vice-versa. Hence, ETVO performance approaches DTW as
Pprop tends to zero. As a consequence, Pprop results in frequent
delay adjustments even for minor changes in delay. From the
standpoint of TI, this behavior is undesirable, since the human
perception is insensitive to smaller delay changes. The addition
of Pfixed controls the frequency of delay adjustments. The
best candidate for each of the three directions is calculated
as shown in Equation (6)-(8) and is illustrated in Figure 5.

3) Improving the timing of delay adjustments: In case of
DTW, the delay adjustments do not align with the actual
events that trigger the delay changes. For TI, such behavior not
only makes analysis hard, but also makes the session quality
estimates inaccurate. ETO should not be influenced by an
event that occurs in the future. Note that Pfixed and Pprop do not
address this issue of timing the delay adjustments. Therefore,
we propose to introduce slack in delay adjustments where their
timing is postponed until the slack penalty Pslack is breached.
Pslack acts on top of Pfixed and Pprop for every delay adjustment,
but is only added after an adjustment is made. The addition of
Pslack increases the likelihood that the delay adjustments match
the events that cause them. With this, the overall cumulative



i >= 0

l > 0

D[i, j] < 0

D[i, j] > 0

!

%

!

%

!

%

l = l − 1
j = j − 1

l = −D[i, j]

j = j + D[i, j]

ETO[i] = j −∆Tmin

i = i− 1

%

!

i = N − 1
ETO = [0]N

l = 0
j = jstart

finish

start

Fig. 7. Flowchart of the backtracking algorithm used to extract the ETO from
direction matrix D

distribution matrix C is given as follows.

C[i, j] = δ(i, j)

+


C→[i, j] if C→[i, j]<min

{
C↓[i, j], C↗[i, j]

}
,

C↓[i, j]+Pslack if C↓[i, j]<min
{
C→[i, j], C↗[i, j]

}
,

C↗[i, j]+Pslack otherwise

4) Defining EVO: Unlike DTW where the residual distance
for every sample in the warp path is aggregated into a single
number, we represent the value-offset as a time-series that
we call EVO. Every sample of EVO indicates the cumulative
amount of distance from all samples of g compared to the
corresponding sample in f , excluding the penalties. When
ETO increases or stays the same, only one sample of g is
compared to f , however, when ETO reduces, EVO is the cu-
mulative distance between the output sample and several input
samples. This enables obtaining fine-grained information on
how samples contribute to the value-offset. The mathematical
description for every element of EVO is given by

EVO[i] =

{∑ETO[k]
l=ETO[k+1] δ(i, l) if ETO[i]>ETO[i+1],

δ(i,ETO[i]) otherwise.

Due to this, there are spikes in EVO every time the ETO
reduces by a large amount.

5) Computational complexity: Besides presenting the
ETVO framework, we also provide an efficient way of cal-
culating ETO and EVO. The addition of Pfixed results in a
larger set of values to consider when finding the optimal path.
Instead of the three adjacent locations, one has to consider a
total of M entries. Besides considering multiple entries, when
backtracking to retrieve the delay, one has to consider how
many steps were taken. To store that information, we propose

a direction matrix D ⊂ ZM×N . The number stored in D(k, i)
indicates that the next point is at i + D(k, i). Because the
direction is stored, there is no need to store C entirely. There
are three directions to consider: up, down, and forward. Each
direction has one optimal source from which to start. If we
remember only the optimal continuations in each stage of the
algorithm, we only need to store a value and the corresponding
index C↓⊂R and idx↓⊂N for downward propagation, arrays
C↗[i, j]⊂RM and idx↗[i, j]⊂NM for upward propagation,
and array C→ ⊂ RM for forward propagation. The resulting
algorithm for populating D is illustrated with a flow chart in
Figure 6.

The backtracking algorithm needs to account for the multi-
ple steps it can take. The calculation method matches how C
was populated. Figure 7 shows a flow chart of the backtracking
algorithm. The complexity of the algorithm for populating D is
determined by two for loops. One of the for loops is looping
through a fixed range M , which does not scale with signal
length. Therefore the complexity is O(N). The complexity of
the backtracking algorithm is bound by a single for loop, so
the upper bound on the combined set is also O(N).

B. Quantitative Metrics for TI
Based on ETVO, we propose a set of two metrics that can

characterize the TI session:
• Effective Delay-Derivative (EDD) expressed as the

average rate of change of ETO, and given as
1

N−1
∑N−1

k=2 |ETO(k − 1)− ETO(k)|, and
• Effective Root Mean Square Error (ERMSE) de-

fined as the deviation of value error, and given as√
1
N

∑N−1
k=0 EVO[k].

The parameters Pprop, Pfixed, and Pslack influence how EDD
weighs against ERMSE. Out of these, Pprop is the most
important of the three. The choice of the parameter values
depends on the type of TI application.

The desirable feature of EDD and ERMSE is the following.
For an application with high dynamic environment, where the
movements are reasonably fast, a small amount of noise is
insignificant, and hence should be attributed to ERMSE. On
the other hand, in low dynamic environment, any amount of
noise becomes significant and it makes sense to attribute it to
EDD. Therefore, in order to accurately tune Pprop, we have
to state how we rate time noise against value noise. One
perspective is to consider time noise to be a source of value
noise too. The amount of value noise is linearly proportional
to the velocity. We suggest using the average velocity of the
TI session so that Pprop = T ẋaverage, where T is the sampling
period and ẋaverage is the average velocity of the signal. Pfixed
suppresses unrealistic optimization and micro-adjustments. In
practice, we found that a value of Pfixed = 2Pprop yields
good results. Pslack effectively cleans up the signal and makes
the timing more accurate, but it only works if Pslack is by
far the least significant. We found that Pslack ≤ Pprop yields
good results. We believe a more sophisticated method or
mathematical backing to tune the penalties is possible in the
future.



V. EXPERIMENTAL SETUP

To validate our proposed metric, we develop a realistic TI
testbed, where a human user can interact with a remotely
rendered virtual environment (VE) over a network. We con-
sider a recently proposed testbed for simulating TI interaction
(Section V-A). This testbed lacks a network and is therefore
not suited for mimicking TI interactions. Hence we carry out
significant refinements to realize a networked TI testbed that
is fast enough to provide a comfortable TI experience (see
Section V-B).

A. Standard TI testbed

The standard TI testbed proposed recently by Bhardwaj
et al., simulates a TI session by having the human user
interact with a Virtual Environment (VE) in slave domain via
haptic and visual feedback [27]. The master domain transmits
position information of the haptic device sampling rate of
1 kHz to the slave domain. The resulting calculated force is
sent back to the master domain along with the visual rendering
of VE. A schematic overview of this setup is indicated as
the gray blocks in Figure 8. In this figure, both master and
slave domains are collocated for ease of experimentation. The
haptic device used in this setup is a Novint Falcon [28]. Force
calculation and rendering in the VE is implemented using
Chai3D [29].

B. Networked TI testbed

We extend the testbed by decoupling the master and slave
domains (each consisting of a workstation) across a network.
Therefore, (i) the VE needs to be rendered on a separate
workstation, and (ii) the two workstations are connected via a
physical network. The local simulation is split into a renderer
at the master domain and a physics engine at the slave domain.
The physics engine translates force into movement and sends
that as feedback. The real-network conditions between the
master and slave are emulated using Netem on a separate
workstation running Ubuntu 18.04 [30]. Netem can emulate
network parameters such as the latency, jitter, and packet
losses. A schematic overview of the entire system is shown
in Figure 8. To emulate real network conditions, we use the
Gilbert-Elliott model to handle packet loss, which is known
to mimic real network behavior closely [31]. For delay jitter,
we use a high correlation factor of 90 % between latency of
the packets. We specify the configured parameters of the loss
model, average latency, jitter, and the algorithm parameters
Pprop, Pfixed, and Pslack in Section VI as and when required.

VI. PERFORMANCE ANALYSIS

We conduct rigorous experimentation to comprehensively
evaluate our metrics using the networked TI testbed. For the
sake of simplicity, we consider only one axis of the position
signal corresponding to the haptic device. Henceforth, we will
refer to that axis signal as input. We compare the performances
of DTW and ETVO. We formulate several scenarios which
enable easy understanding of the working of ETVO. Finally,
we demonstrate the strength of the proposed performance
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Fig. 8. Schematic overview of our measurement setup. The components
present in the reference setup of Bhardwaj et al. highlighted in gray [27].

metrics along with describing how they can be arrived at based
on the ETVO.

A. Comparison between DTW and ETVO

For this work we made alterations to the base DTW algo-
rithm. In this section, we take a look at the effects of these
alterations. To illustrate the differences in behavior between
DTW and ETVO, we picked four fragments of time, each
corresponding to a different signal. The fragments are picked
to illustrate different aspects of decision making between DTW
and ETVO. We start by gauging the sensitivity of each of the
schemes to the signal variations. For this experiment, we set
the following configuration: [average lat., jitter, Pprop, Pfixed]
= [15 ms, 10 ms, 0.01, 0.005 ]. Figure 9(a) corresponds to this
experimental setup. It can be observed that when the velocity is
high (extremes of the plot), DTW shows vigorous fluctuations
in time-offset estimation. On the other hand, ETVO sensibly
changes its estimation of ETO exhibiting resilience to the noise
in the signal. When the velocity is low in the middle, ETVO
being context-aware stops adjusting the ETO since there is
a negligible improvement in EVO. DTW however, does not
care about how minor changes and keeps constantly adjusting
the time-offset, irrespective of the context. The scenario for
Pslack = 0 is also demonstrated (labelled as ’NoSlack’). In
this signal, a change in delay is randomly made in the middle
of the quiet period (as indicated with 1), while the ETO with
Pslack postpones that decision to a more sensible moment. Note
that in the value domain, ETVO and DTW perform similar,
despite the significantly higher number of delay adjustments
performed by DTW. Moreover, DTW lets the delay fluctuate
regardless of what is going on, while ETVO modulates the
delay only at high velocities. ETVO reasonably concludes that
a higher update rate is desired when more is happening. This
example shows how ETVO makes evaluations that are context-
aware.



Fig. 9. Comparison of the performances of DTW and ETVO frameworks in a variety of experimental setups under the conditions (a) Heavily varying position
signal, (b) Packet losses and perceptual deadband, (c) Effects of Pprop and Pfixed, and (d) Effect of addition of noise to input signal.

We now investigate the ETVO performance in the presence
of fewer haptic updates. This could be a consequence of
either packet losses or employment of compression schemes.
To capture the effects of these phenomena, we emulate this
scenario through two processes: perceptual deadband [32] and
packet losses. This enables us to evaluate the performance
when the value-offset is considerable. We choose a deadband
of 5 % and bursty loss following the Gilbert-Elliott model
with parameters p = 5% and r = 50%, as prescribed in
[33]. For this experiment, we set the following configuration:
[average lat., jitter, Pprop, Pfixed] = [0 ms, 0 ms, 0.005, 0.005 ].
Figure 9(b) corresponds to this scenario. It can be clearly seen
that the output signal is subject to a noticeable jitter due to
the combined effect of packet loss and deadband. However,
there are three specific instances (indicated by markers 2-
4) where the combined effect of deadband and bursty losses
prominently results in no change in the output signal. In this
case, DTW relentlessly adjusts the time-offset as the deadband
and losses are slightly degrading the signal. ETVO, however,
remains robust to the jitter for the most part and sits at the
average delay. But in cases where the effect is prominent,
ETO is adjusted as indicated with markers 5-7. The value-
offset is smoothed with a Gaussian distribution for visual
clarity. As one expected, in the value domain ETVO is slightly
higher than DTW. Although each of the schemes perform
their corresponding tasks accurately, the behavior that is most
favorable for TI applications is exhibited by ETVO. Especially
considering that time variations are considered to be extremely
detrimental to the session quality.

In this part we show the distinct effects of Pprop or Pfixed,
and the need of considering both. We show the results in
Figure 9(c). We consider three different settings for algorithm
parameters:
(i) [Pprop, Pfixed] = [0.025,0.05] (corresponds to black curve),
(ii) [Pprop, Pfixed] = [0.05,0] (corresponds to amber curve), and

(iii) [Pprop, Pfixed] = [0,0.1] (corresponds to green curve).
Marker 7 indicates an event where the ETO with Pfixed = 0
adjusts in multiple small steps. In this case, there is no
difference in extra cost associated with using multiple steps,
causing the amount of adjustments to increase. Marker 8
indicates an event where the ETO with Pprop = 0 causes a
large step changes but limited in the number of steps. In this
case, there is no extra cost associated with how much the
ETO changes, giving rise to giving rise to unreasonably large
ETO adjustments. The signal that has both components has a
similar performance in the value domain, but a significantly
less cluttered ETO.

Figure 9(d) shows the effect that high-frequency noise has
on DTW and ETVO. For this purpose, we introduce AWGN
with an SNR of 70 dB. The experimental configuration is as
follows: [average lat., jitter, Pprop, Pfixed, Pslack] = [15 ms,
1 ms, 0.005, 0.01, 0.005]. Both DTW and EVO are plotted
with the noise added, while DTW!N , is a version of DTW
without the added AWGN. High-frequency noise is a good
example of a common way of signal distortion that DTW
cannot deal with properly. Note that ETO outperforms the
best case DTW i.e. DTW!N , demonstrating its noise resilience.
Further, one can also notice the vulnerability of DTW to even
a marginal amount of noise causing time-offset to fluctuate
vigorously.

B. Performance of EDD and ERMSE

In previous subsections, we demonstrated how the perfor-
mance of ETVO is desirable for TI in comparison to DTW. In
this section, we demonstrate how the proposed measures EDD
and ERMSE perform. We conduct four runs of the experiment
with one value for following network jitter in each run –
0 ms, 5 ms, 10 ms, and 20 ms. In all experiments, the input
and output signal durations are larger than 10 s. In each run,
we calculate the EDD and ERMSE for a wide range of Pprop



Fig. 10. Based on the data of our experiments, the EDD and ERMSE that
ETVO calculates are plotted as a function of Pprop.

to demonstrate how the penalties balance out the EDD and
ERMSE. The results are shown in Figure 10.

DTW assigns no value to EDD, which means Pprop = 0.
The endpoints on the left match what DTW would report, but
without accounting for the starting and the ending artifacts.
When N → ∞ the contribution of those artifacts become
negligible, but for small N , the contributions can be significant
in comparison with ERMSE. For high Pprop, the EDD becomes
zero, as any change is too expensive. However, we can still
have any constant delay, so the result is the ERMSE value
for the optimal constant delay. This can be seen as the
best scenario for ERMSE when the optimal constant delay
is known. Existing measures do not compute this, so in
practise the ERMSE will be orders of magnitude higher for
the methods proposed in literature. For every experiment there
is a pair of lines that indicates the balance between EDD and
ERMSE for Pprop ∈ [≈ 0, 1]. For low values of Pprop, the
signals reach a point where decreasing Pprop no longer leads to
a reduction in ERMSE and therefore an increase in EDD. One
can also see the law of diminishing returns in play, where a
large increase in amount EDD is required for the same amount
of ERMSE reduction. For high values of Pprop, signals reach a
point where increasing Pprop no longer leads to a decrease in
EDD. That is because at that point EDD is already zero. Again,
we see the law of diminishing returns, where the ERMSE goes
up quite a bit for only a marginal reduction in EDD. Both
DTW and taking RMSE of the output directly (constant delay)
attempt to account all errors leading a single metric such as
mean error. As we see in Figure 10, DTW takes one extreme
and constant delay takes another extreme. However, we believe
that the optimal should be in between these extremes. ETVO
provides a handle in the form of tunable penalties (Pprop) using
which one can select the tolerable delay and corresponding
least error.

VII. CONCLUSION AND FUTURE WORK

As the field of Tactile Internet (TI) is advancing fast,
there is a strong need for quantifying performance sessions

objectively. In this paper, we first presented first lack of
TI performance metrics in the state of the art and their
limitations for using them to characterize TI sessions and
systems. Specifically both time offsets and value offsets in
the input signal and the received (or output) signal cannot
be extracted separately in those methods. To overcome these
limitations, we find Dynamic Time Warping (DTW) algorithm
used in speech recognition as the most suitable. However, we
also encountered certain issues in applying DTW directly to
characterize performance of TI applications. We demonstrated
the issues and provided a mathematical framework to address
them. During the course, we proposed two novel concepts: Ef-
fective Time-Offset (ETO) and Effective Value-Offset (EVO)
that enable the representation of TI performance at a fine
scale. Based on ETO and EVO, we defined two quantitative
performance metrics - Effective Delay-Derivative (EDD) and
Effective RMSE (ERMSE) - for quantifying the impact of
network effects on the quality of a TI session.

Through rigorous experiments using a haptic tool and
experimental setup, we demonstrated their salient features.
We demonstrate how ETO and EVO are context-aware and
noise-resilient estimation of similarity between the input and
output signals. We believe that objective metrics for measuring
subjective quality will enable significant improvements in
design of TI applications. While the current work looks at
an offline session, we intend to solve the non-trivial problems
of measuring objectively in real-time in the near future.
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