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ABSTRACT
Pyroelectric Infra-Red (PIR) sensors are used in many ap-
plications including security. PIRs detect the presence of
humans and animals from the radiation of their body heat.
This could be used to trigger events, e.g., opening doors,
recording video, etc. PIRs are used widely because of their
low power consumption.

Hitherto, PIR sensors were used for binary event genera-
tion – human/animal present or not-present. At the same
time simple binary output hinders the use of PIR sensors in
a wide variety of sophisticated applications. In the litera-
ture, we find limited characterization of analog output from
PIR sensors that could provide much more information.

We built a simple array of PIR sensors and packaged them
in a tower. We used two sets of four PIR sensors and tapped
their analog signals after amplification. Our major contri-
bution is the characterization of analog signals from the PIR
sensors. We describe many interesting aspects obtained from
the analog signals, which have not been explored until now.
We also show their correspondence with the range, speed
and size of the moving object. Using the characterization of
PIR sensors analog data as well as simple binary decisions
from these PIR sensors, we: (i) classify moving object with
high precision; and (ii) localize the moving object. The ma-
jor incentives are low operating power compared to WSNs.

We achieve 30 cm accuracy in 80% of the times, when
ranging up to 5 m. Over multiple experiments for different
persons in the range 1-10 m, we show that the error proba-
bility for localization is 0.08 at moderate distances (around
5-6 m). Our work will help in designing better detection
and application triggers using PIR sensors in the near fu-
ture. We believe that this work will open up new avenues in
the development of new applications with PIR sensors.
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1. INTRODUCTION
Pyroelectric material based passive infrared (PIR) sensors

detect any heat emitting body1 moving in front of them.
This ‘on the fly’ presence detection has found several ap-
plications, due to its inherent heat detection and measure-
ment capabilities. For example, faucets open when hands are
placed below; lights switch on/off when motion is detected
in rooms; cameras are triggered on detecting movement of
animals in their natural habitat for recording video. In the
last example, a video sensor requiring higher power can be
used efficiently with PIR sensors. Here a sensor that can
“see” gets augmented with a sense of “feel” and this augmen-
tation saves energy. Another major class of application is
indoor security systems.

PIR sensors can be made to do more: range and local-
ize objects for use in security systems and gaming applica-
tions. In these applications, if only camera sensors are used,
they consume more power for sensing a large area; they re-
quire sophisticated image processing algorithms and expen-
sive lenses to improve ranging and angle of detection. For ex-
ample, Microsoft Kinect [3] uses a camera with sophisticated
algorithms for ranging to drive gaming applications. Wire-
less Sensor Networks for localization require beacons and ex-
change of information packets in range-based algorithms [11]
and dense deployment in range-free localization [14]. Thus
the ultra low power feature of PIR sensors becomes attrac-
tive. Typically, a PIR sensor consumes approximately 3µW
for movement detection and corresponding amplifiers con-
sume 800µW. Further, by employing PIR sensors that cover
disjoint but adjacent areas along with simple-to-mount plas-
tic lenses (to improve the range of sensors), we can reduce

1In this article, we refer to the heat emitting sources as
objects that consist of warm-blooded living beings including
humans and other sources.



the power consumption by several orders. Thus, PIR sen-
sors provide a low cost, low power, inexpensive, small and
lightweight alternative in many applications, if exploited in
the right way.

Unfortunately, many of the existing works are interested
in the binary output. Typically, applications (for example,
robot tracking [10]) that uses binary output from the PIR
sensors. The right way, we believe, is to utilize the analog
output from the PIR sensors. In fact, we can exploit infor-
mation provided by amplitude, phase and frequency of the
analog signal from PIR sensors for detection, ranging of the
object, etc. For instance, the analog signal can not only
detect the presence of a human, but also his/her height, di-
rection of movement, how far he/she is from sensor system.
If the person has a special gait or gesture associated with his
walk, the signal could have rich information to identify or at
least differentiate people, which is not possible with binary
output. Since characteristics of the analog signals from PIR
sensors are not well-studied, there is a gap in literature. To
this end, we first characterize the analog output.

With the analog signals, we specifically target two impor-
tant problems: (i) Detection and classification: finding the
moving object fairly accurately, and classifying the object’s
width and height. (ii) Localization: the so-called “Holy
Grail” application of sensor networks – the localization of
objects2. In the process, we go beyond the conventional use
of PIR sensors and show that we can extract several new
features from PIR sensors.

A known problem of PIR sensors is that they are very
sensitive to slight disturbances – even fluttering of leaves or
a blowing of hot air during the summer months can trig-
ger a presence, leading to false alarm or low detection rates.
Many techniques and sophisticated machine-learning algo-
rithms have been developed to improve true detection. In
order to avoid this problem, we have used multiple collocated
PIR sensor arrays in order to detect and classify objects with
reasonable certainty.

We have modified the PIR reference electronic design to
get analog signals for processing. Our contributions are of
several folds: (a) we have provided an in-depth discussion of
the important characteristics of the analog signal from the
PIR sensors that may be used in applications other than ones
discussed in this article; (b) our system containing an array
of PIR sensors can be used for different applications such
as moving object classification and localization; (c) we have
classified the height and width of the detected object; (d)
we have proposed novel methods of using the analog signal
for continuous ranging and localization. To the best of our
knowledge, this work is one of the first to exploit analog
signals. We believe our work can open up new avenues for
research using PIR sensors, possibly in many different ways.

The rest of the article is structured as follows: In Sec-
tion 2, we describe some of the previous work on PIRs that
are close to ours; in Section 3 we describe our experimen-
tal setup; in Section 4 we characterize analog output sig-
nals from PIRs. We explain classification in Section 5, and
localization in Section 6. We describe the evaluation of our
system in Section 7, and finally conclude in Section 8.

2. RELATED WORK
In literature, many applications use multiple PIR sensors

2We consider only indoor environments for localization.

either as an array of collocated sensors or distributed in
space mostly using binary output. Complex techniques and
algorithms are then employed to achieve applications such
as localization. We list some of the relevant applications and
how they are executed.

Counting : Wahl et al. proposed a distributed PIR sen-
sor based algorithm for detecting and counting people [13].
Binary output from PIR sensors is used to reduce the over-
head of continuous sampling and in turn reduce the energy
consumption.

Detection: Analog signals rendered by the PIR sensors
are analyzed to distinguish true intrusion from clutter due
to vegetation has been studied by Abu Sajana et al. [4]. En-
couraged by the results, authors in [4] extended it for intru-
sion classification using chirplets [12]. We collaborated with
them to develop a PIR sensor platform as described in this
paper. Moving beyond the use of binary output for motion
detection, Frankiewicz and Upek explore the hardware re-
quirements to extract analog signals for motion recognition
and activity classification [8]. Al-Naimi, et al. used a com-
bination of custom built PIR sensor and embedded pressure
sensors to accurately detect, identify and track humans [6].

Tracking : Xiaohu and Yongxin used a crawler robot with
modified pyroelectric sensor mounted on it to track humans
and animals and also determine the direction of motion [5].
Jaeseok and Min-Hwan designed a ceiling mounted array of
sensors to detect the direction of motion utilizing dual ele-
ment sensors arranged in 2× 2 matrix and polarized analog
output [15]. Tracking people moving in a hallway using the
similar principle is reported in [18]. PIR sensors facing each
other throughout the hallway are used to localize people.

Localization: Zhiqiang et al. used PIR sensor in both
indoor and outdoor settings to detect and localize moving
targets [19], where a grid network is used assisted by an
adaptive thresholding to find direction. Localization of hu-
mans in an indoor environment using an array of PIR sensors
fixed on the ceiling is discussed in [9]. Signal from multiple
PIR sensors are mapped onto a feature space using tem-
poral and spatial correlation. Location is estimated using
intersection probability. We also show some important dif-
ferences between GridEye [2] sensors for localization with
ours in Table 1. Feng et al., harnessed IR changes induced
by human motion using PIR sensors and show its advantage
over acoustic, ultrasonic and optical sensors for detection
and localization applications [7]. Localization is done us-
ing the binary output coming from three IR bearing arrays
each consisting of four vertically mounted PIR sensors. Po-
sition identification of a human using a pair of PIR sensors
is reported in [17]. The sensors are placed facing each other
and the area between them is separated into three zones.
Depending on the number of sensors triggered, position in
terms of zones is found. Some basic features, such as dura-
tion and output amplitude, are measured to further refine
the position of the person. Zappi et al. proposed a system
where three PIR sensor systems are placed at an angle with
respect to each other [16]. They distinguish the direction of
movement and count the number of people moving through
a gate or a section of a hallway. A portion of the Fresnel
multi-lens is masked to create a narrow slit and achieve the
required Field of View (FoV) to suit the application require-
ments.

As described above, most of the proposals use binary out-
put to achieve their goals. While analog signals are used by



some [16,17], they at most use them in a rudimentary fash-
ion. None of these works have harnessed analog signals for
ranging and localization of people moving randomly. This
may be because analog signals have not been characterized
thoroughly. Of these works, though Zappi’s work is not for
ranging it uses multiple sensors to gather analog signals [16].
This seems to be the closest work to that of ours. We also
compare our work with [16].

Table 1: Comparison with GridEye [2] and Melexis [1]

Parameters Our Work GridEye Melexis

Sensing Pyroelectric Thermopile Thermopile
Element

Sensing Senses Direct indication Direct indication
Property Temperature of the incident of the incident

Difference IR flux IR flux
seen by two

sensor elements

Sensing 15-20m 5m <10cm
Range (adjustable)

Power 6.75mW 22.5mW 6mW

Signal Type Analog Digital Digital

Detection Only Both static Both static
moving & moving & moving
objects objects objects

Range Yes No No
Estimation

Complexity Low High (embedded High (embedded
(only post DSP & post DSP & post
processing processing processing
required) required) required)

FoV 16.73◦(conical) 60◦conical 90◦conical

Spot, 97◦
horizontal & 4◦

vertical Multi-lens

Sensing 16 64 N/A
elements/

pixels

3. EXPERIMENTAL SETUP
Since we are interested in capturing analog signals from

PIR sensors, we have designed a custom-made system for
our experiments. We detail our setup in this section.

3.1 Sensor Tower Design
A single PIR sensor cannot provide much information

about a moving object in order to classify and localize it
with reasonable accuracy. To achieve this, we collaborated
with [12] and designed a sensor tower with collocated mul-
tiple PIR sensors in a specific configuration. We have also
built an appropriate electronic circuit to capture the analog
signals for processing rather than working with binary out-
put as provided in the vendor reference circuits. Figure 1
shows the PIR sensor tower, which houses collocated multi-
ple PIR sensor arrays covered with lenses that support differ-
ent angles and ranges for detection. The tower is bifurcated
into “Group A” and “Group B”, each consisting of a pair of
quad-element sensors where each sensor provides two ana-
log outputs. Each quad-element sensor is mounted in such a
way that the two dual-element sensors inside are vertically
one above the other. Group A has two spot lenses, cov-
ering dual-element sensors, namely S1 and S2, and S3 and
S4. Group B also has two dual-element sensors, namely M1
and M2, and M3 and M4, that are behind multiple Fresnel
lenses (called multi-lens hereafter). Further, we can change
the gain of Group B sensors thereby we can adjust the de-
tection range, which helps in localization.

Typically, detection area of a PIR sensor element is small
and rectangular in shape. In order to sweep a larger area
and to strengthen the incoming infrared rays, we have placed
Fresnel lenses in front of the sensors. Such a lens condenses
the incoming infrared rays into its focal point where the
sensor is mounted. We use different types of lenses that

Figure 1: PIR sensor tower system.

cover Group A and Group B sensors, since their purposes
are different.

The spot lens used are TR1004 from Kube3. The purpose
of the spot lens is to get a narrow angle of detection so as
to find the width of the moving object. The spot lens has
a conical angle of 16.73◦. The multi-lenses used are TR426
also from Kube. The intention of placing these multi-lenses
is to cover wider angle and provide better range of detection.
The multi-lens has 97◦ along the horizontal plane and 4◦

angle along the vertical plane. A multi-lens is made up of 10
small “lenslets”. An object moving in front of these sensors
cuts the beams of detection rendering an output that holds
information about the object. The multi-lens sensor in the
top is shifted 2.2 mm downwards from the focal point so that
the FoV points upwards. Similarly, the bottom multi-lens
sensor is shifted upwards from the focal point by 2.2 mm
to bend the FoV downwards. This mechanism avoids the
overlapping of FoV of both multi-lens sensors, providing a
larger range for height classification.

Due to this configuration of sensors and lenses, the tower
provides us details on height and size of the detected object,
and paves a way for better classification and localization
algorithms.

3.2 Electronics

Figure 2: PIR amplifier circuit.

The signals from PIR elements are weak and need to be
amplified several hundred times to get a reasonable signal
to work with. Further, a single rail amplifier design refer-
ence provided by the vendor can result in a smaller swing
of the analog signal. Hence, to gather the true analog sig-
nals, we drive the op-amp with a “Rail-splitter” system. The
rail-splitter takes the conventional single rail from a 9V DC
supply and splits it to dual rail for use by amplifiers. The

3http://www.kube.ch



electronics shown in Figure 2 consists of a two-stage am-
plifier. The gain of each stage is adjustable using a poten-
tiometer placed at the feedback of each stage. Therefore
a dual sensor PIR has four potentiometers with which we
can adjust the gain. We explain the capabilities of this cir-
cuit that provides more opportunity to extract features from
analog signals where signal amplitude, phase and frequency
with parameters such as amplifier gain assist in analyzing
the signal for detection and ranging.

4. CHARACTERIZATION OF SIGNALS
FROM THE SENSOR TOWER

We first look at the analog signals obtained from the sen-
sors, before describing the features of the signals.

4.1 Analog Output of the PIR Sensors
The principle of operation of the sensors is as follows:

dual-elements of a single sensor (e.g., S1) are wired as op-
posite inputs to a differential amplifier. Thus, output from
one element has its polarization inverted compared to the
other. When an object passes by, the sensor gets triggered
by one of the elements, producing a differential voltage be-
tween two elements of the sensor. This corresponds to the
‘positive’ output, i.e., a positive voltage is generated. When
the object crosses the other element, the polarization re-
verses resulting in ‘negative’ output. When an object moves
across the sensor tower (parallel to the face of the tower) in
the FoV from one end to the other, the analog signals gen-
erated by a spot sensor and a multi-lens sensor are shown
in Figure 3. Since the sensors at the top of the tower are
covered with spot Fresnel lenses, ‘positive to negative’ and
‘negative to positive’ swings are generated. However, since
multi-lens have 10 lenslets, they generate a sinusoidal swing
as the object moves across. Here, each sinusoidal swing cor-
responds to one lenslet of the multi-lens, indicating detection
of the object.

To the best of our knowledge, we are the first to sample
PIR analog signals at 1 kHZ. The raw signals obtained from
all the sensors are smoothened using Savitzky-Golay filter.
This helps in removing the minor peaks caused by noise.
Thus peak to peak amplitude can be found effectively.

Figure 3: Output signals generated by spot and a multi-lens
sensor on detection.

4.2 Characterization
PIR sensors are very sensitive to any change in the incom-

ing IR rays; even the smallest movements are registered. To
increase reliability, we combine analog signals from multi-
ple sensors in the system. This increases the accuracy of
identification and even estimation of the behavior of move-
ment as compared to what a single PIR sensor can achieve.
To demonstrate this, we conducted a simple experiment in

System False alarm (%)
One PIR Sensor 17.5
Proposed system 2.5

Table 2: Comparison of false alarm rate in proposed system
to a system using only one PIR sensor.

which an object moves randomly across our sensor tower
and a PIR sensor. Table 2 shows that our system can reli-
ably detect objects due to combining the output of multiple
sensors.

From the analog output signals of the sensor tower we
observe several parameters – such as, frequency and ampli-
tude – that depend on the characteristics of movement by
the object. We collected the parameters by deploying the
sensor tower and repeated the experiments to get consistent
measurements. We describe the parameters below.

4.2.1 Amplitude (A)
The amplitude of the output signal from each sensor in-

dicates the difference in heat (of IR rays) detected by each
sensor element. Each sensor unit (see Figure 1) continues
to provide signal output until their dual-elements do not see
a change in the temperature. We observed several factors
that impact the amplitude of the signal.

Ambient temperature plays a crucial role in the detection
of a moving object. The amplitude of the analog output
from a PIR sensor is directly proportional to the difference
in temperature of the object and the ambiance. Figure 4
shows the peak to peak amplitude of the output from the
spot sensor (whose gain is relatively high) at 1◦C and 20◦C
of a person walking. This can affect the localization process
when the amplifier gains are low. We have not compensated
temperature in ranging. However with the help of an extra
circuitry including a thermistor it is possible to compensate
the error due to ambient temperature in the localization
process.

Figure 4: Effect of temperature on amplitude.

Gain of the amplifier (G)
The gain of the amplifier controls the sensitivity of the PIR
sensors. By changing the sensitivity, it is possible to change
the range in their FoV. Sensors can detect motion at longer
distances – when the output signal is amplified with a higher
gain – due to relatively higher amplitude of the output sig-
nal. Thus, the gain plays a crucial role in setting the range
of detection (R) in the FoV of the sensor.

Speed of moving object (S)
With a constant gain set for all the sensors, we observed that
as the speed of the moving object at a particular distance
increases, the amplitude of the output signal decreases. This
is because the duration and amount of IR rays falling on



the sensor element diminishes as the speed of the moving
object increases. When the object moves slowly across a
sensor, the exposure time of the object is longer. Longer
the duration, higher is the chance of absorbing all the IR
rays emitted by the object, and thus, generating relatively
higher amplitude. Figure 5 plots the variation in amplitude
of the output signals generated by a spot sensor and a multi-
lens sensor at three different speeds 1 kmph, 5 kmph and
10 kmph. The distance of the object from the tower is kept
constant in all the experiments.

Figure 5: Plots showing the output signals from a spot sen-
sor (top) and a multi-lens sensor (bottom) at different speeds
while keeping the gain and distance constant.

Distance of moving object (D)
Peak-to-peak amplitude is an important feature that was
not harnessed hitherto. For a particular gain, with fixed
speed of movement, we measured the peak-to-peak ampli-
tude of the output signal from a multi-lens sensor and a
spot sensor. We varied the distance of the moving object
from the tower, and the object moved across while facing
the tower. We collected these measurements asking 20 peo-
ple to move across the tower with a timer. Each data point
is the average of 20 experiments. The peak-to-peak am-
plitude for various distances forms a bell-shaped curve as
shown in Figure 6. Interestingly, we see in the plot that the
peak-to-peak amplitude increases with the distance initially,
but gradually decreases and, finally, vanishes. The reason
for this behavior is almost similar to that of the speed of
movement. When a person moves across the sensor in the
proximity, he is nearer to the vertex of conical FoV of the
sensor element. In this case, the duration for which he is
in the FoV of the sensor is relatively low compared to that
of movement farther away. Hence, the amplitude of the sig-
nal is low for movements nearer to the tower. Similarly, at
farther distances, because of diffusion of the IR rays in the
ambiance, IR rays absorbed by the sensor elements are not
sufficient to generate high amplitude. Consequently, there is
an optimal point between the nearest and farthest distance,
where the amplitude of the signal is highest. Around this
distance, the sensor receives maximum amount of IR radi-
ations from the moving body to generate high amplitudes.
Note that the speed and gain influence this amplitude. The
amplifiers of spot and multi-lens sensors having the same
gain, the peak-to-peak amplitude generated by spot sensor
was observed to be relatively higher compared to that of
multi-lens. This is because, the spot lens had larger aper-
ture than that of each lenslet in the multi-lens. Hence, spot
sensors can target larger ranges.

Figure 6: Example plots showing the peak-to-peak ampli-
tude of output signals from a spot sensor and a multi-lens
sensor for movements at different distances with same gains
and speed set to 4 kmph.

Orientation of motion (θ)
The amplitude of the signal varies as the orientation of the
object changes while keeping the speed constant. When the
object moves towards the sensor at a distance at an angle
θ with respect to the face of the tower (for instance, 45◦),
the peak-to-peak amplitude generated by a lenslet of the
multi-lens is comparatively more with respect to the out-
put from the immediate previous lenslet. Similarly, when
the person moves away from the sensor tower at an angle θ
to the face of the tower, the amplitude decreases gradually
with time. However, this phenomenon cannot be observed
in spot sensors as each element generates only one swing on
detection. The decreasing peak-to-peak amplitude when a
person moves towards the tower crossing the FoV of sensors
at the angle 45◦ is shown in Figure 7. The angle of scope
(φ), shown in the figure varies as the orientation of motion
changes. φ is maximum when the movement is perpendicu-
lar to the sensor face. However, φ depends on the speed of
movement. At a speed of 1 kmph, and a θ of 45◦, φ = 140◦

and for 10 kmph, φ = 170◦. When the movement is parallel
to the sensor tower at any constant speed over time φ = 90◦.
Once we know the speed (see Section 6.2.2), we can calculate
the angle θ. As an illustration, we found the following rela-
tionship between θ and φ empirically for an object moving
at 5 kmph: θ = 0.8867φ+ 91.3.

Figure 7: The variation of amplitude and frequency for the
movement at an angle 45◦ at a speed of 5 kmph.

4.2.2 Frequency of the observed signal
Because of multiple lenslets in the multi-lens sensors, the

output signals from these sensors contain sinusoidal waves
whose frequency changes with the change in distance and/or
speed of movement. When the object moves at a constant
speed at nearby distances across the tower, frequency of the
signal is higher as the object cuts more lenslets in lesser
time. At farther distances, the conical FoV grows and the
object will take more time to cross single lenslet at the given
speed. When the distance is kept constant, frequency of the



signal is directly proportional to the speed of movement.
Figure 7 shows the increase in the frequency of signal, when
the movement is towards the tower from a farther point, at
an orientation of 45◦.

4.2.3 Phase of the signal
The phase of the output signal generated by the spot sen-

sors indicates the direction of movement. When the move-
ment is from left to right, the left sensor element of a dual-
element sensor (say S1) is triggered first. This generates
a positive pulse. When the object crosses the right sensor
element, then a negative pulse is generated. The output
waveform is shown in Figure 8. Similarly, if the direction
of movement is from right to left, the sensor element in the
right triggered first which generates a negative pulse, suc-
ceeded by a positive pulse by left element. Hence, the direc-
tion of movement can be identified observing the behavior
of the spot sensors.

Figure 8: Plot showing the phase of output signal from a
spot sensor for a direction left to right and right to left.

4.2.4 Time difference between pulses of spot sensors
Unlike the multi-lens sensors, the spot sensors at the top

of the tower will generate a single pulse when the object is
detected. When the moving object enters the FoV of one
of the spot sensors (for instance, S1), the sensor generates a
sinusoidal swing. When the object leaves the FoV and enters
the FoV of another spot sensor (for instance, S3), there is
another pulse generated by the second sensor. Hence, the
time difference between the pulses generated by sensors on
the left and right of the tower is the time taken by the object
to move from the outer end of FoV of the left sensor to the
extreme end of the FoV of the sensor on the right. The
period of the pulse generated by a sensor is equal to the time
taken by the object to cross the FoV of the corresponding
sensor. Figure 9 shows the time at which the object is in
front of spot lens S1 (blue pulse) and the time at which
the object enters the FoV of S3 (red pulse). Considering
the object is moving across the sensor tower, as marked in
Figure 9, t1 is the time taken by the object to move into the
FoV of S1 and exit S3, t2 is the time the object being in the
FoV of S1; and t3 is the time in which the object is in the
FoV of S3. Thus, spot sensors give the information about
the angle of moving object in the FoV at a particular time
instance.

5. CLASSIFICATION OF OBJECTS
It is possible to estimate and classify the height of objects

being tall or short. Similarly, the width of the object can
also be classified into small or big. This may be important
information in indoor security systems. For example, with

Figure 9: Plot showing the time differences between two
detections.

the height and width information, one may draw inference
on the type of object: a tall and small object could be a
person, and a short and big object could be a pet. This
information can avoid false alarms caused by pets when the
sensors are deployed indoors for security purposes. We make
use of spot sensors and multi-lens sensors together to classify
the height and width of moving objects. For classification,
all the sensors are set with a fixed amplifier gain so that the
detection range in the FoV can be set. Each sensor output
is considered to examine whether there was detection or not
in the FoV of that particular sensor.

5.1 Height classification
We use the multi-lens sensors to estimate the height of

moving objects. If the detection is triggered by all the four
multi-lens sensors M1, M2, M3 and M4, then we classify the
object as “Very Tall”. On the contrary, if there is detection
by M4 alone, then the height of the moving object is classi-
fied as “Very short”. In this way, depending on the detection
by different sensors, we can easily classify the height of the
detected object into four categories – “Very short” (detec-
tion by M4 only), “Short” (detection by M3 and M4), “Tall”
(detection by M2, M3 and M4) and “Very Tall” (detection
by all multi-lens sensors). Figure 10 shows an example of
height classification of an animal. Since the object is de-
tected by M3 and M4, we can say that the height falls in
the “Short” range. The decision, of course, depends on the
distance; thus ranging before classification is necessary for
higher accuracy.

Figure 10: Side view of an animal in the FoV of M3 and M4.

5.2 Width classification
We use the spot sensors for width classification. When

a person moves in front of the sensor tower, it is possible
that spot sensors (either S1 and/or S2, or S3 and/or S4)
can trigger at an instant. However, in case of big animals
(like cattle in outdoor settings), all the spot sensors trigger
at the same time when animals are in the FoV of all the spot
sensors. Even pets like dogs can trigger two sensors at the
same time. Hence, we classify the object that is detected



Figure 11: Top view of a walking person and an animal in
the FoV of spot lenses.

by the sensor(s) (S1 and S2 or S3 and S4) at an instance as
“Small” and detection by at least one on both sides as “Big”
(see Figure 11).

Though spot sensors are majorly responsible for width
classification, multi-lens sensors can also help in this case as
they generate sinusoidal waves when the object moves across
them. For a particular speed of movement, the frequency of
the signal generated by multi-lens sensors is more when a
four-legged animal walks in front of it compared to a hu-
man. Four legs cut different lenslets of the multi-lens at a
faster rate one after the other unlike in the case of a human.
Though we classify objects in terms of big, small, tall, etc.,
it is also possible to estimate the height of the object to a
certain extent. This can be achieved once the localization
is done. The height at which the sensor tower is placed is
known. When the distance of the object from the tower is
estimated, the height of the object can be calculated using
the geometry of the FoV of the sensors, which is a constant
parameter. For instance, if the tower is placed at a height of
1 m from the ground, then the outer edge of the FoV of M1
covers a height of around 2.5 m at a distance of 8 m from the
sensor tower. Hence, we can specify very short, short, tall
and very tall as less than 1 m, between 1 and 1.5 m, between
1.5 and 2 m and greater than 2 m, respectively.

6. LOCALIZATION USING SENSOR TOWER
In this section, we first describe different techniques for

ranging. Then we describe our novel ranging and localization
techniques.

6.1 Localization with fixed gain
We localize an object by considering the parameters (see

Section 4.2) from all the signals that capture the movement.
We have tried to localize objects using different approaches.
In order to achieve localization, it is necessary to find the
range of the moving object from the tower, its direction,
speed of movement, and the angle at which the object is
moving with respect to the sensor tower.

6.1.1 Fixed gain
Through controlled experiments we first try to find the

exact relationship between the signal parameters such as
amplitude and frequency for movements at various speeds
at different distances and angles. In this experiment, all the
eight sensors had a constant gain, which was tuned for the
sensor sensitivity to cover a range of approximately 7 m from
the sensor tower in the FoV. The experiment was conducted
in an indoor area (classroom). The sensor tower was placed
in one end of the room at a height of around 1 m from the
ground. The tower was placed in such a way that the maxi-

mum area of the room is covered by the FoV of the sensors.
Several trials were done by moving at different speeds and
at various distances with a step of 1 m until the end of FoV,
i.e., at 7 m. We repeated this experiment with and with-
out obstacles such as desks and benches in order to find the
effect of obstacles on the sensor output.

After processing the output signals, we were able to find
the speed and distance of the object manually for each par-
ticular trial. The obstacles did not affect the output signal
noticeably unless the obstacle covered the object completely.
With the measurements and characterization, it is not possi-
ble to derive a relation between the signal parameters as all
of them are interdependent on each other except the ampli-
fier gain. In addition, signals generated by the sensors could
be the same if an object moved at a higher speed at farther
distance or if the object moved at a lower speed at a nearer
distance. Hence, at least one of the signal parameters or a
physical parameter has to be found in order to estimate the
other.

6.1.2 Trilateration using multiple towers

Figure 12: Multiple towers deployed.

As a next step, we used more than one sensor tower for
localization so that trilateration could be applied. When
more than one tower was used, each tower looked at the
moving object from a different angle and a different distance.
With the combination of signals from different towers placed
at pre-defined locations, it was possible to overcome the pa-
rameter dependency problem and arrive at an acceptable
conclusion. A few possibilities for placing the sensor towers
are shown in Figure 12. The combinations include the place-
ment of two sensor towers along a horizontal line (Fig. 12-1)
or vertically opposite to each other with FoV of two towers
not overlapping (Fig. 12-2), three sensor towers along a cir-
cle at an angle of 120◦ with respect to each other (Fig. 12-3)
and vertically opposite with non-overlapping FoV (Fig. 12-
4). The experiment was conducted in the same location as
earlier, but with two sensor towers that were placed 5 m
apart. The towers were kept at an angle of 70◦ with respect
to each other to get maximum overlapping FoV. The exper-
imental results showed the possibilities of localization with
multiple towers but the signal processing was more complex
due to many outputs. Another disadvantage of this method
was that the towers had to be kept at specific angles during
deployment. A small change in the placement might lead to
inaccurate estimations.

6.1.3 Energy output over time
The elements of a PIR sensor are of a capacitive nature.

The energy of the signal output from the PIR sensor is di-
rectly proportional to the amount of heat absorbed by the
sensor elements and is accumulated at the elements acting



as a capacitor. Hence, the output current is inversely pro-
portional to the output voltage of the signal. Hence, energy
E of the signal from sensor is, E = I

∫ t2
t1
y(t) dt, where I is

the current output and y(t) is the time variant analog signal
from the sensor. The integration of the output from multi-
lens sensors over time is the energy output by the sensor,
which depends on the amplitude and frequency of the sig-
nal. Here a question arises: what if the energy output from
a sensor is the same for different speeds of movements at
different distances? Even though the signal parameters are
interdependent, this problem can be tackled easily as the
combination of amplitude and signal frequency is unique in
different scenarios. Certainly, the output energy of the sig-
nal is equal for a slower movement at nearby distances and
for a faster movement at farther distances. But peak-to-
peak amplitude is inversely proportional to the frequency in
this case, providing a unique solution.

6.2 Localization with variable gain
All the experiments done until this stage were with fixed

gain. Modifying the amplifier gain results in a change of the
sensor sensitivity, implying change in the detection range.
Thus, by setting different gains for different amplifiers, it
is possible to create specific ‘zones’ of distances until which
a particular sensor detects the motion. Now, we have two
parameters: gain and the range, whose values are fixed. We
conducted an experiment using a single sensor tower with
different gains set for spot and multi-lens sensors with which
we could achieve localization successfully.

6.2.1 Zoning or Ranging
Several zones in the FoV were created by adjusting the

amplifier gain for the multi-lens sensors. Here, only the
multi-lens sensors were used for zoning as they have a wider
FoV and also because of their ability to generate continuous
sinusoidal signals when compared to spot sensors.

Gain adjustments
We refer to a multi-lens sensor in the tower as Mx where
x ∈ {1, 2, 3, 4}. Each multi-lens sensor Mx was set with an
amplifier gain Gx so that the output signal with maximum
peak-to-peak amplitude Amax

x occurs only at a particular
distance dx at a reference speed Smin. This reference speed
was usually very low because the sensor generates maximum
voltage at relatively low speeds of movement only if the heat
emitted by the object moving across the tower is captured
well. Thus, the gain for the amplifiers was set according
to the speed Smin. All the spot sensors had the same gain
set to cover a maximum detection range of 2dmax, where
dmax = max{dx} ∀x.

Zone creation
The value dx for a particular sensor Mx had to be chosen
wisely so that new blind areas were not created in the FoV.
Hence, one dual-element sensor of a quad-element sensor
had to cover the maximum possible range. So, it is wise to
set sensor M1 to generate maximum peak-to-peak voltage
output at d2, M3 at d4, M2 at d3 and M4 at d1, where
d4 > d3 > d2 > d1. The inter-zonal distances, which is
the distance between d2 and d3 or between d3 and d1, and
so on, can be arbitrarily set. However, the localization is
more accurate only when these values are equal and as small
as possible. A typical inter-zonal distance is around 1 m

which is sufficient enough to locate a moving person in a
small room. If the value is below 1 m, then the fine details
of hand movements might be recorded creating ambiguity
during signal processing. This inter-zonal distance decides
the resolution of the localization. The ray diagram with
FoV of each sensor after setting variable gains is shown in
Figure 13. The output of sensor M1 is A1,max at distance
d2, output of M2 is A2,max at distance d3, output of M3 is
A3,max at distance d4 and output of M4 is A4,max at distance
d1. The d1, d2, d3 and d4 are set as 1 m, 2 m, 3 m and 4 m,
respectively.

Figure 13: Ray diagram after setting variable zones.

Amplitude vs Distances/zones
As explained earlier, the plot of peak-to-peak amplitude Ax

v/s distance dx forms a ’bell’-shaped curve whose peaks are
at the same distances. This is true when the amplifier gain
of the multi-lens sensors are the same. In case of different
gains set for different multi-lens sensors, the peak of each
bell shaped curve shifts by dx where the corresponding sen-
sor Mx generates maximum peak-to-peak voltage Amax

x as
shown in the top plot of Figure 14. Because of different zonal
coverage, A3 > A2 > A1 > A4 at particular distance dx. In
general, the output signal from the sensor Mx has maximum
peak-to-peak voltage Amax

x at distance dx when an object
moves across the sensor at speed Smin. At distances shorter
and longer than dx, the amplitude of the signal Ax from the
sensor Mx decreases gradually until it reaches almost zero.
However, for the movement at farther distances, the object
is out of range, thus, the signal is almost zero. At nearby
distances, say less than 1 m from the tower, the object is
almost in the vertex of conical FoV of a sensor and, thus,
both the elements of the sensor see the same temperature
resulting in near zero output.

6.2.2 Speed Calibration
The reference plot (top) in Figure 14 is obtained for speed

Smin. In real-time, the object can move at different speeds
at different instances. Hence, it is necessary to consider the
variation in peak-to-peak amplitude of the output signal at
different distances for different speeds. The plots of maxi-
mum peak-to-peak amplitude Ax vs distance dx for sensors
Mx for speeds Si

4 and Smax is shown in Figure 14 (middle
and bottom plots, respectively). Since the reference plot is
obtained for the lowest considered speed Smin, the speeds Si

and Smax are higher than Smin i.e., Smin < Si < Smax. Al-
though in experiments we tested for various speeds, we plot-
ted three curves of reference speeds in Figure 14 for brevity.
If a set of curves for a particular speed is available then we
use the measurements. Otherwise, we use interpolation. At

4Si is the speed of object which is between Smin and Smax.



Figure 14: Peak-to-peak amplitude vs distance at speeds
Smin = 1 kmph (top), Si = 5 kmph (middle) and Smax =
10 kmph (bottom).

speeds Si and Smax, the plot obtained is a set of bell-shaped
curves, but the maximum peak-to-peak amplitude Amax

x for
sensor Mx is less than Amax

x obtained with speed Smin for
the same sensor. Moreover, the distance at which Amax

x oc-
curs is not at dx anymore, but at dx + δ, where δ is a small
increment in distance. This means, at speed Si, the entire
reference plot is shifted to d1 + δ1 along abscissa and shifted
to d2 + δ2 for speed Smax. This phenomenon is because of
the dependency between speed, distance and amplitude as
explained in Section 4.2. Correspondingly, the decrease in
amplitude is also observed for higher speeds. These set of
plots obtained with speed Smin, Si and Smax are used as
reference on the fly to localize an object if the curves for
different (intermediate) speeds are not available.

6.2.3 Signal Processing
The three set of curves obtained at speeds Smin, Si and

Smax can be mathematically represented using Gaussian
curve fitting. In order to increase the accuracy of the fit,
two terms were considered. Now, each curve has the expres-
sion in the form,

Ax,S(d) = a1(S,d)exp(−
(d− b1(S,d))2

c21(S,d)
)

+ a2(S,d)exp(−
(d− b2(S,d))2

c22(S,d)
),

where x is the multi-lens sensor (M1, M2, M3 or M4), S
is the reference speed (Smin, Si or Smax) and d is the dis-
tance. Hence, Ax,S(d) gives the peak-to-peak amplitude of
the output signal from multi-lens sensor x at distance d for
the particular reference speed Si. The coefficients a1, a2,
b1, b2, c1 and c2 are the coefficients obtained from curve
fitting, which are constant for the respective curves. Con-
sidering this Gaussian fit and the coefficients, the speed of
movement and the distance of the moving object from the
sensor tower can be estimated using Least Squares.

As soon as a movement is recorded by the spot sensors,
the direction of movement is identified by the phase of the
signal. Depending on the direction of movement, the time

taken by the object to move from the FoV of one spot sensor
to another is calculated. Let the time taken be t s. Assuming
that the object is moving in the center of FoV (R/2), parallel
to the tower face, we can calculate the speed of the object
Speed = dFoV /t, where dFoV is the distance between the
outer edge of one of the spot sensor and inner edge of another
spot sensor at the center of FoV (dFoV is constant as we
know the angle of FoV). The speed thus obtained is first
approximate speed of movement Sf .

Figure 15: Example of interpolation of data for M3, from
1 kmph and 5 kmph curves to obtain Sf = 3 kmph.

Since we have empirical curves for various speeds, we try
to use the values from the curves directly. However, for a
particular speed, if we do not have an empirical curve, we
compute its value as described here. To find an intermediate
curve set for speed Sf , we interpolate the available two set of
curves whose speeds are above and below Sf . For instance,
if Sf = 3 kmph, then its curve set can be obtained by inter-
polation of curves of 1 kmph and 5 kmph. Figure 15 shows
the interpolation of two curves for sensor M4 to obtain Sf

= 3 kmph.
For approximate distance calculation with the reference or

interpolated curves, we need to find the least error between
peak-to-peak amplitude of the signal generated by all multi-
lens sensors. Let Ap

x represent the peak-to-peak amplitude
from sensor x. We utilize the Least Squares method to find
the least error, εx,S(d), for sensor x with reference speed S
by using the following expression,

εx,S(d) = min(Ap
x −Ax,S(d))2

The expression is iterated over different distances in the
curve from d=1 m to 2dmax (the detection range) with S =
Sf . The first approximation for range df is found when the
error is minimized.

The distance df thus obtained is considered for refining
the speed by replacing dFoV with df . Thus, the newly found
approximate speed is df/t. A new curve set for this speed
has to be interpolated from the reference set of curves using
Least Squares in each iteration. The process is iterated until
the distance starts diverging instead of converging or if the
pre-determined maximum number of iterations is reached.
The algorithm for distance and speed calculation is shown
in Algorithm 1. We set K = 10; we observed that well
within K, the algorithm converged and on few occasions it
indeed diverged. A situation might occur where the mov-
ing object crosses the FoV of only one spot sensor returns
without crossing the other. In this case, the pulse width
of the signal gives the time required to calculate the first
approximated speed.

7. EVALUATION
We evaluated the system and its behavior for different

movement scenarios. It was also necessary to evaluate how



Algorithm 1 Range estimation algorithm

1: procedure RangeEstimation(K) // K is the maxi-
mum number of iterations for computing the range

2: dFoV ← 4 //in m
3: t ← time between two pulses
4: S ← dFoV /t
5: R1 ← Find range using curves (as in Sec. 6.2.3)
6: i ← 1
7: repeat
8: Si ← Ri/t
9: Ri+1 ← Find range using curves with Si

10: if Ri+1−Ri < threshold then
11: return Ri

12: i← i+ 1
13: until i ==K
14: return Ri+1

well the sensor tower can locate an object even in the pres-
ence of obstacles. Hence, the experiment was conducted in
a classroom as it contained many desks and benches as ob-
stacles. We explain the scenarios and our evaluation in this
section.

7.1 Deployment Scenarios
Distance and speed of movement of an object can be esti-

mated using a single sensor tower but localizing the object is
tricky since it can be located on any point at that particular
distance. In order to locate the object in the FoV in two
dimensions, we used two sensor towers that were spatially
separated as shown in Figure 16. The towers were placed at
90◦ angle with respect to each other. One tower gave the
abscissa and another provided the ordinate in the detection
area. The towers were placed at a distance of dmax from
a point which formed the center point of detection range
of both the towers. These two towers were connected to a
signal processing unit (laptop running MATLAB). Since the
usage of three towers at an angle of 120◦to each other did
not add much information for trilateration, we used only two
sensor towers to locate an object in two dimensions.

Figure 16: Sensor tower deployment.

In order to classify, the amplifier gain for all the sensors
has to be the same and they should cover the required range.
On the contrary, different zones are created by setting vari-
able gains for different sensors for localization. So, it was not
possible to classify and localize the object with the same sen-
sor tower simultaneously. Hence, we used two sensors placed
side-by-side, one for classification and the other for locating
the abscissa of the object in the area of interest. However, if
a digital potentiometer (software controller) were to be used

for controlling the amplifier gains, then it would be possible
to classify and localize using the same sensor tower, though
one after the other. In this case, all the sensors will have
equal amplifier gain for ranging larger distance in the be-
ginning. As soon as an object is detected within the range,
we can classify the object. Immediately after classification,
zones can be created by changing the gains via digital po-
tentiometer for localization. In this manner, a single sensor
tower could switch between classification and localization
when a software controlled potentiometer is used for gain
adjustments.

7.1.1 Zone creation
Since we wanted to have a higher resolution of localization,

we chose an inter-zonal distance of 1 m. Therefore, the gains
for sensors M1, M2, M3 and M4 were set so that they gen-
erate maximum peak-to-peak amplitude at 2 m, 3 m, 4 m
and 1 m respectively at speed Smin. Since M3 covered the
largest range of 4 m, both the towers were placed at 4 m dis-
tance from the center point (4 m, 4 m) in the area of inter-
est. The maximum distance until which localization could
be achieved was at 2dmax = 8 m from each tower as M3 can
sense until 2dmax.

7.1.2 Creating Reference curves
Three reference speeds Smin, Si and Smax were chosen

to be 1 kmph, 5 kmph and 10 kmph respectively. This is be-
cause the speed ranges between 1 kmph, 5 kmph and 10 kmph
are likely to be the speeds at which people move in indoors.
With these values, the reference set of curves were created by
moving in front of the tower (parallel to the face of a tower)
at different distances ranging from 1 m to 8 m. The refer-
ence curves thus obtained are shown in Figure 14. Though
we show only three sets of reference curves in the figure we
have experimented for multiple sets of curves to evaluate the
algorithm.

7.1.3 Movement scenarios
Typically, placing of the sensors is such that objects mostly

do not move perpendicular to their FoV. Such scenarios were
also tested and validated. The scenarios are as follows:

Moving parallel to a tower and perpendicular to the other :
In this type of movement, the multi-lens sensors, from the
tower to which the object is moving parallel, generate a
sinusoidal swing with non-varying peak-to-peak amplitude
over time. The multi-lens sensors of the tower, to which
the movement direction is perpendicular, generate sinusoidal
swings with varying amplitude over time. The amplitude
increases when the movement is towards the tower and de-
creases when the object moves away from the tower. The
object moving in the area to the left of the FoV of sensors
and moving perpendicular to the tower can be identified
since detection is triggered only by the left spot sensor.

Moving at an angle to both the towers: When the object
moves at an angle to both the sensor towers, an increase or
decrease in amplitude and frequency is observed. We find
and use the angle as described in Section 4.

7.1.4 Testing and Validation
All the three sensor towers were connected to a PC on

which the signal processing was done. However, the use of
PCs can be eliminated by converting the MATLAB code into
microcontroller compatible code to accomplish signal pro-



cessing on the microcontroller. The testing was performed
for different speeds between Smin and Smax by moving in
the area of interest at different distances and orientations.
The trials were done with 20 different people. This included
all the possible movement scenarios in the indoor location.

7.1.5 Comparison with Zappi et al.
We arranged our sensor towers to replicate the work by

Zappi et al. [16]. We used only one sensor from each tower
and masked the multi-lens to mimic their setup. We used
three single sensor mounts as shown in Figure 17 of our
setup to compare with their work for reference. They find
only the direction of movement (only left-to-right or other-
wise) using spatial diversity induced by their deployment.
We use collocated sensors in a single tower. Indeed we im-
proved their work by applying the techniques described in
the earlier sections to find the distance in their deployment
for comparison. We use the geometry of the deployment and
the signals captured by three sensors to find the range. If the
object moves at an angle, it is difficult to estimate the dis-
tance with their setup. Though there are many differences
such as above, it is the closest work to ours.

Figure 17: Setup for comparing our work with [16].

7.2 Results and Discussions
The different classification levels - very short, short, tall

and very tall heights are imitated (by walking, crawling,
etc.) multiple times by 20 different people. The confusion
matrix thus obtained for different trials is listed in Table 3.
We observe that the values along the diagonal show higher
than 90% accuracy. We evaluated the error probability

Table 3: Confusion matrix obtained for different classifica-
tion types.

Very short Short Tall Very tall
Very short 0.98 0.02 0 0

Short 0.06 0.9 0.04 0
Tall 0 0 0.93 0.07

Very tall 0 0 0.05 0.95

distribution for localization at longer distances by increas-
ing the range of M1 to 11 m and M3 to 9 m. Figure 18
shows the error probability distribution of localization over
all distances till 10 m moving at different angles. At shorter
distances, as seen in Figure 6 the amplitude is less result-
ing in higher errors. Further, at shorter distances noise also
affects the range calculations. Around 5 m range since all
the sensors capture the movement well, the amplitude is rel-
atively higher resulting in better positioning. Beyond this
distance, since only one or two sensors capture the move-
ment the range calculations are affected.

Figure 18: Error probability distribution over distances for
localization.

The probability distribution of error for localization in
three major scenarios at different speeds are listed in Ta-
ble 4. In the table, we observe that for all the speeds, the
error probability is relatively more for the movement per-
pendicular to the tower face as compared to parallel and at
different orientations. This is because, when a person moves
towards the tower in between S1 and S3 along the center,
the person is usually in the FoV of one lenslet of a multi-lens
sensor (hardly two or three). As the detection is hardly trig-
gered in adjacent lenslets of the center lenslet, a sinusoidal
swing is not generated by multi-lens sensors. Even when
the person approaches the tower, most of the lenslets are
triggered at the same time, generating multiple high peaks
without generating sinusoidal wave. However, the column
‘perpendicular to tower’ in Table 4 includes all movement
scenarios such as moving perpendicular to S1, perpendicu-
lar to the tower in between S1 and S3 and perpendicular to
S3. The major contribution towards the error is perpendic-
ular movement in the center of FoV, in between S1 and S3.
The results are more accurate for movements parallel to the
tower. For angled movements, the error is relatively high at
lower speeds as the dampening of sinusoidal swing cannot
be observed clearly at very low amplitudes.

Table 4: Error probability distribution for localization in
different scenarios at different speeds and distances.

Error probability

Speed (kmph)
Perpendicular
to tower

Parallel
to tower

At angles.

1 0.42 0.2 0.38
2 0.51 0.17 0.32
3 0.49 0.18 0.33
4 0.56 0.16 0.28
5 0.61 0.14 0.25
6 0.64 0.12 0.24
7 0.63 0.15 0.22
8 0.55 0.19 0.26
9 0.52 0.20 0.28
10 0.48 0.21 0.31

We compare our work with Zappi’s set up. Note that in
our method for ranging we used single tower. Figure 19a
shows an interesting aspect that while error probability in
our case remains constant, Zappi’s method shows an in-
crease. This is due to the fact that at lower ranges the
signal amplitude is higher and it goes down with distance.
In our case, we control the gain for ranging. We also plot
CDF in Figure 19b comparing our method with Zappi’s set
up for localization within 5 m. It is evident that 50% of the
times both the methods behave almost similarly having an
error around 20 cm and 80% of the times we achieve within
30 cm accuracy. Where as in Zappi’s case it is around 50 cm.



(a) Error probability over dis-
tances.

(b) CDF of error and distance
in localization.

Figure 19: Comparison of proposed method with [16].

While localizing objects up to 10 m (not shown) we found
that 50% of the times the error is below 60 cm.

8. CONCLUSIONS
Typically, PIR sensors are used to provide a binary out-

put to detect moving objects in its FoV. This limits the
collected information about the targets. Thus we tapped
the analog signals from the sensors that made it possible
to easily capture angle and direction of movement, speed,
etc. To effectively capture the analog signals we used a
tower with a pair of spot sensors and a pair of multi-lens
sensors. Using the tower we provided a thorough character-
ization of analog signals. We also changed the gain of each
sensor so as to cover different ranges. Further, we found
empirically an expression between the range and peak-peak
amplitude for multi-lens sensors. This provides us a handle
to explore localization possibilities. We have also provided a
methodology to derive sets of reference curves that capture
the relation among amplitude, distance and speed in various
scenarios. Using these, we experimented with localization
employing two sensor towers. The results are significant:
we could achieve improved detection reducing the false pos-
itives. Further, using a single tower we found 50% of the
times localization is within an error bound of 60 cm when
the range is up to 10 m. The error also depends on the
range of the sensors. Moreover the cost of electronic cir-
cuitry for the tower is around $15. The power requirement
for each sensor is approximately 1.67 mW including amplifier
circuitry. Thus, we can achieve a reasonably high accuracy
in localization with low power and inexpensive PIR sensors.

There are some limitations though: we still need to find
a way to switch online PIR sensors from detection mode to
ranging mode. Since the operating voltages are too small,
the possibility of localization error is higher. The time for
localization is around 4 s since it depends on the speed of
the object and time taken to move across the FoV. This
estimation time is on the higher side. We have tested our
system with only one person in the FoV. However, if there
is more than one person our system may not work. We are
in the process of addressing these limitations.
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