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ABSTRACT
Internet of Things (IoT) solutions are increasingly being deployed
for smart applications. To provide good communication for the
increasing number of smart applications, there is a need for low
cost and long range Low Power Wide Area Network (LPWAN)
technologies. LoRaWAN is an energy e�cient and inexpensive LP-
WAN solution that is rapidly being adopted all around the world.
However, LoRaWAN does not guarantee reliable communication
in its basic con�guration. Transmitted frames can be lost due to
the channel e�ects and mobility of the end-devices. In this study,
we perform extensive measurements on a new LoRaWAN network
to characterise spatial and temporal properties of the LoRaWAN
channel. The empirical outage probability for the farthest measured
distance from the closest gateway of 7.5 km in our deployment is
as low as 0.004, but the frame loss measured at this distance was
up to 70%. Furthermore, we show that burstiness in frame loss can
be expected for both mobile and stationary scenarios. Frame loss
results in data loss, since in the basic con�guration frames are only
transmitted once. To reduce data loss in LoRaWAN, we design a
novel coding scheme for data recovery called DaRe, which extends
frames with redundant information that is calculated from the data
from previous frames. DaRe combines techniques from convolu-
tional codes and fountain codes. We develop an implementation
for DaRe and show that 99% of the data can be recovered with a
code rate of 1/2 for up to 40% frame loss. Compared to repetition
coding DaRe provides 21% more data recovery, and can save up to
42% energy consumption on transmission for 10 byte data units.
DaRe also provides better resilience to bursty frame loss. This study
provides useful results to both LoRaWAN network operators as
well as developers of LoRaWAN applications. Network operators
can use the characterisation results to identify possible weaknesses
in the network, and application developers are o�ered a tool to
prevent possible data loss.

CCS CONCEPTS
• Networks → Network performance analysis; • Theory of
computation → Error-correcting codes; • Software and its
engineering → Designing software;
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1 INTRODUCTION
With miniaturisation of computing and communication devices, the
number of sensors used in our daily life is increasing exponentially
in the recent years. With the rise and projected scale of applica-
tions in IoT, many technological solutions are proposed for various
applications such as smart industry, smart street lighting, smart
cities, and vehicle to infrastructure communications for vehicle
monitoring and tra�c updates [3]. Many early adopters of IoT used
short range communication for their sensors requiring multiple
hops before reaching the Internet cloud. However, recent advances
have enabled a simpler technological solution called Low Power
Wide Area Networks (LPWAN) that o�er low energy communica-
tion over distances of multiple kilometers, making sensors send
data to the Internet backbone over only one hop.

LoRaWAN (Long Range Wide Area Network) is one of the several
competing LPWAN technologies with amongst others SigFox, NB-
IoT and Weightless [5]. LoRaWAN has been the most successful of
these technologies in providing an easily accessible LPWAN [6].
This protocol is being developed by the LoRa Alliance [24], which
is an open alliance. LoRaWAN is speci�cally being developed for
applications with small end-devices that have to send small amounts
of data over large time intervals. In comparison with other LPWAN
technologies, LoRaWAN claims an inexpensive, secure and power
e�cient communication method for these devices. Therefore, it
is important to study LoRaWAN and characterise it in a practical
deployment.

LoRaWAN is based on LoRa, which describes the physical layer
of the communication. LoRa uses a chirp spread spectrum modula-
tion, i.e., the data is modulated on a carrier signal that constantly
changes frequency in a �xed bandwidth. This modulation technique
is said to give LoRa a good resilience to interference, multipath
and Doppler e�ects [20]. A LoRaWAN frame can be received by
multiple gateways that forward the frame to a central LoRaWAN
network server. The network server checks device policy, decrypts
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the frame payload, removes duplicates, and forwards the data to
the corresponding application server.

Since LoRaWAN communication takes place over long distances,
frames can be lost due to propagation losses and other physical
phenomena such as shadow fading, re�ection, and scattering due
to urban clutter. The LoRa modulation scheme supports various
spreading factors over the carrier wave, with each spreading factor
o�ering a certain data rate and robustness against the physical
phenomena. Spreading factor 12 (SF12) is the most robust of the six
available spreading factors and trades o� data rate for increased
range and increased reception ratio at the gateways. In order to
study and characterise frame loss, we perform real-world measure-
ments with a LoRaWAN network. We have collected data exten-
sively (around 23,000 frames) over several days in stationary and
mobile scenarios. Since the network is still in development, the
LoRaWAN services are not yet open for general public. This allows
us to do �rst of its kind measurements of LoRaWAN in an almost
collision free LoRaWAN network, something that will be hard to
do in the future. With the collected data, we observe that there is
a signi�cant amount of frame loss that occurs as the end-device
moves farther away from a gateway. We observe a loss of up to
53% when the end-device is around 6 km away from the nearest
gateway. Furthermore, we observe that frame loss in the channel
can be quite bursty.

Frame loss leads to loss in data. Since an IoT application is often
data-driven data loss must be minimal, so it is desired to recover the
data lost in LoRaWAN communication. There are several constraints
that need to be met for LoRaWAN data recovery:

(1) LoRaWAN targets to serve up to 15,000 devices per gateway.
Automatic Repeat Request (ARQ) with acknowledgement
(ACK) mechanisms is an option in the LoRaWAN proto-
col. However this option is not default since it introduces
a lot of communication overhead and requires downlink
communication. With increasing numbers of devices in
a LoRaWAN network, the transmission of ACKs by the
half-duplex gateways will lead to frame loss in the uplink
communication. Hence ACKs a�ect the scalability of the
network as well as increase the energy consumption on
the end-devices.

(2) The solution must not require any change in the gateways
since such a solution is expensive for existing deployments.

(3) The LoRaWAN communication channel can introduce burs-
ty frame loss, as we will show in Section 4.

Considering these constraints, we infer that any proposed tech-
nique should operate at the application layer such that the solution
can work with already deployed LoRaWAN networks. Also scenar-
ios with bursty frame loss should be handled.

In this work, we design and implement an application layer
coding scheme called DaRe to reduce data loss. The need for such a
scheme is further motivated by the ALOHA-type medium access
technique employed in LoRaWAN, which will inevitably cause a lot
of collisions leading to frame loss. DaRe is a convolutional erasure
coding scheme with novel techniques employed to maximise data
recovery and minimise overhead. DaRe does not intend to recover
the lost frames but it enables the recovery of the data from lost
frames using forward error correction on the application level.

Figure 1: Schematic overview of a LoRaWAN network.

Since the coding method will be implemented on embedded devices
with low computational capabilities, we design DaRe to be a low
complexity mechanism.

Speci�cally, our contributions through this work are as follows:

(1) To the best of our knowledge, we are the �rst to per-
form large-scale measurements of LoRaWAN in an almost
collision-free deployment of multiple gateways. We collect
data sets for stationary and mobile scenarios over several
days.

(2) With the data sets, we are the �rst to characterise both
spatial (frame loss over distance) and temporal (burstiness
of frame loss) properties of the channel. We �nd that the
channel can be bursty even when the end-device is station-
ary.

(3) To recover data from lost frames, we propose a novel ap-
plication layer coding technique called DaRe, based on
both convolutional codes and fountain codes. We use an
algebraic framework to describe and simulate the coding
technique.

(4) We develop an implementation of DaRe for LoRaWAN.
We evaluate this implementation by (i) emulating results
for theoretical channels, (ii) emulating DaRe on the data
sets collected in the network measurements, and (iii) per-
forming frame and data loss measurements with a device
running DaRe in runtime. We �nd that we can recover
up to 99% of the data up to 40% frame loss with a code
rate of 1/2. With a code rate of 1/5, we can recover 99%
up to 68% frame loss. Furthermore, we show that the solu-
tion has little overhead compared to other low-complexity
solutions.

The rest of the paper is organised as follows. In Section 2 a brief
introduction on LoRaWAN is given. The method of data collection
is explained in Section 3. The frame loss characterisation of Lo-
RaWAN is done in Section 4. In Section 5, DaRe and the algebraical
framework is introduced. The performance of DaRe is assessed
through simulations in Section 6. In Section 7, an implementation
of DaRe is proposed and evaluated. In Section 8, existing research
on LoRaWAN and erasure coding is discussed. We conclude in
Section 9.

2 AN OVERVIEW OF LORAWAN
In this section, we brie�y introduce LoRaWAN. A LoRaWAN net-
work has a star of stars topology: the end-devices transmit data
directly to one or more gateways, which in turn connect directly to
a central network server. A schematic of this network topology is
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shown in Figure 1. The network server removes duplicate messages
and forwards them to an application server.

LoRaWAN operates in the license-free ISM band. The 915 MHz
and 868 MHz bands are used in the USA and in Europe respectively.
The band in Europe has certain regulations [25]. A maximum trans-
mit power of 14 dBm is allowed on the end-devices, and the max-
imum allowed transmit duty cycle is 1%. This means devices can
only transmit 1% of the time. This applies to the gateways as well.

Devices communicating over LoRaWAN have three operating
classes - class A, B and C - with an increasing order of downlink
communication (communication from a gateway to a device). Class
A is the default class of operation. A device in this class adopts an
ALOHA-like scheme to send a LoRaWAN frame. After a device in
Class A has transmitted a frame, it will listen for two time slots
in which the device can receive data. Only in these time slots is
a Class A device in receiving mode. Class B extends Class A by
having additional receiving slots at preset times. A Class C device
will always be in receiving mode unless it is transmitting. Class A
is the most preferred operating class since it has the least energy
consumption.

A LoRaWAN frame is transmitted with a certain spreading factor.
The spreading factor can range from SF7 to SF12 and expresses the
number of chirps that are used per symbol. Each symbol is encoded
in 2SF chirps. A higher spreading factor has a longer transmission
time and lower data rates but will give a longer range. LoRaWAN
supports the automatic setting of the spreading factor with Adaptive
Data Rate (ADR). The network server monitors the quality of the
uplink communication and informs the device on the best spreading
factor to use.

The LoRa physical layer employs a soft hamming block error
correcting code with a code rate 4/5 to reduce bit errors. However,
this does not eliminate frame loss completely. The reception of a
LoRaWAN frame relies primarily on detecting the preamble of a
frame. If the preamble is not detected by the receiver, the complete
frame is not received. This makes the LoRaWAN communication
channel a packet erasure channel. Frames are either completely
received, or not received at all.

Error detection in a frame is done by means of a 32-bit message
integrity code (MIC). This MIC also guarantees message authentic-
ity, since it is a cipher-based message authentication code (CMAC)
calculated with a device speci�c key.

3 SETUP AND DATA COLLECTION
SCENARIOS

In this section, we describe our data collection setup, scenarios,
method and the data sets collected for the analysis of the LoRaWAN
communication channel.

3.1 Measurement Setup
3.1.1 Network. The LoRaWAN network used for this research

was in development. Because of this there were only a handful of
devices transmitting data on the network. Therefore, we consider
frame loss as a result of collisions to be negligible. Furthermore,
the con�guration of the network is still being improved and the
gateways are positioned only for (close to) line-of-sight coverage.

Figure 2: The data collection device. A Sodaq Mbili Rev.
4 [23] with EMB-LR1272E LoRaBee module, DHT11 ther-
mometer and GY-NEO6MV2 GPS module.

For this reason we only collect data in outdoor scenarios, and frame
loss is expected to be lower when the network is in production.

While the measurement devices adhered to the duty cycle limits,
they were exempted from any usage limits on the number of mes-
sages. We use Thingpark Wireless Logger1 to log the LoRaWAN
frames received by the network server. Wireless Logger stores pay-
load and metadata of each received LoRaWAN frame. As explained
before, multiple gateways can receive a single frame. Unfortunately
only up to three receiving gateways per frame are shown in the
logger. That is, only the three gateways that received the LoRaWAN
frame with the strongest received signal strength indicator (RSSI)
can be identi�ed in the logs. This complicates a per gateway anal-
ysis of frame reception. To eliminate false negatives (assuming a
gateway did not receive a frame, while in reality it did), only the
strongest three receiving gateways per data set are used to do per
gateway reception analysis. But the small probability for false neg-
atives makes the results in this paper tend towards the worst case
of the actual frame loss characteristics.

All the gateways in the LoRaWAN network are situated at an
average height of 27 m. The antennas have a gain of 11 dBi. The
gateways are positioned on an average of 8 km apart. Furthermore,
the maximum distance that an end-device can be positioned from
its closest gateway is 7.5 km.

3.1.2 End-Device. The end-device used for data acquisition is a
Sodaq Mbili Rev. 4 [23], shown in Figure 2. The antenna has a gain
of 2 dBi. The device operates in Class A.

To characterise the LoRaWAN communication channel in time
and space, measurements were done at multiple locations. To per-
form the analysis after data collection, we need the location from
which each frame was transmitted. A �rst version of the device did
not include a GPS module, so the location from which LoRaWAN
frames were sent were matched using the timestamp to a GPS track
made with the mobile application Strava2. The �nal version of the
device did have the GPS module, so the coordinates were sent in
the frame payload itself.

1http://www.thingpark.com/
2https://www.strava.com/
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The LoRaBee module is a separate component and is connected
to the Sodaq Mbili with a serial interface. The serial interface is used
to transmit data, retrieve the received data, and to set MAC param-
eters. The sub-band and bandwidth are set according to Semtech
standards [19]. The bandwidth is 125 kHz for all transmissions. Fur-
thermore, we set the transmission power to the maximum allowed
14 dBm.

The spreading factor is controlled by the ADR mechanism, since
a �xed spreading factor is not supported by the device. This means
frames could be sent with any spreading factor. However, the largest
part of the frames (∼95%) were transmitted using SF12. Only these
frames have been used for data analysis.

The spreading factor and the coordinates for frames that were not
received needed to be guessed. The coordinates were interpolated
on a straight line between the neighbouring received frames. The
spreading factor for the missing frames was taken to be the lowest
spreading factor of the neighbouring received frames.

3.2 Data Collection Scenarios
We identify two scenarios for our data collection: data from sta-
tionary locations and data when the end-device is moving (mobile
data). All the data was collected with the end-devices placed next
to a window or outdoors.

3.2.1 Stationary data. The stationary data sets were generated
with the end-devices transmitting every 15 s, 10 minutes or 15
minutes. During measurements the devices were in a constant
position and orientation. The stationary data contains roughly
18,000 frames.

3.2.2 Mobile data. The mobile data sets were collected using
the device shown in Figure 2. During data collection the device
was battery powered. Measures were taken to make sure that the
battery was su�ciently charged and operational during the entire
duration of data collection. For generating mobile data we chose
two methods to make it mobile: by bicycle (bike) and by car.

A bike has been ridden with an average speed of 22 km/h for
approximately 300 km in total. The farthest distance to the closest
gateway is 7.5 km, and the average distance to the closest gateway
is 3.2 km. The end-device was also taken in a car for approximately
350 km in total. The average speed was around 80 km/h (mainly on
highways). In this scenario, approximately 80% of the LoRaWAN
frames sent were from rural area, and the rest were from an ur-
ban area. The selected terrain was �at, without signi�cant hills or
mountains. The mobile data contains approximately 5,000 frames.

4 FRAME LOSS CHARACTERISATION
Before we present our coding scheme we �rst analyse the data sets
in order to characterise the channel and the frame loss. We present
our �ndings from the analysis in this section.

4.1 Channel Model and Outage
The channel model is a function of the distance between the sender
(end-device) and the receiver (gateway). We use the bike data set
to determine the model, since it provides measurement points at
di�erent distances. The Doppler e�ect is negligible because of the
relative low speed. Since the bike data is collected from all di�erent
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Figure 3: Channel Model. (a) Attenuation due to path loss is
modelled using bike data set, giving a path-loss exponent
of 2.71. (b) The fading follows log-normal distribution as
shown by the distribution �t.

routes, we can negate the e�ect of permanent shadowing and other
e�ects due to surroundings. We look at the measured received
signal strength indicator (RSSI) and the signal-to-noise ratio (SNR)
for di�erent transmission distances to calculate path loss [16] given
by,

PL = RSSI + SNR + PTX +GTX +GRX . (1)

Here, PTX is the transmit power, GTX and GRX are the gains of
the transmitter and the receiver antenna respectively. We then �t
a line with a second order polynomial �t to estimate the expected
path loss. This is shown in Figure 3(a). Based on the �t we estimate
the path-loss exponent, which is found to be 2.71. The shadow
fading, obtained by subtracting the path loss from the expected
path loss, is shown in Figure 3(b). The fading follows the log-normal
distribution with a mean of 0.56 and standard deviation of 7.11.
With these parameters and the receiver sensitivity of the gateway
(around -137 dBm), we can estimate the cell outage probability [8].
The outage probability is the probability that the received power
at a given distance falls below the receiver sensitivity due to path
loss and shadowing. Due to paucity of space, we refer the reader
to [8] for details. The outage probability for the farthest distance
of 7.5 km is found to be 0.004, indicating that the coverage of the
current deployment is good.

4.2 Frame Loss over Distance
In order to characterise frame loss, or erasure of frames, due to
the channel e�ects, we analyse the data from all our data sets. We
�rst look at frame loss as a function of distance between the end-
device and the gateway. Since we can determine the location of
each sent frame, we can calculate the distance from the end-device
to the gateways and check whether the frame has been received.
To account for location estimation inaccuracies we consider bins
of 1.5 km in which we calculate the average frame reception ratio
(FRR). Figure 4 shows the FRR with respect to the distance of the
end-device from the gateway. It is evident from the �gure that more
frames are lost as the distance to the gateway increases. While
the outage probability is quite low at 7.5 km, the frame loss is
signi�cant at that distance: almost 70% of the frame are lost around
that distance.

Finding #1: Frame loss is quite signi�cant in LoRaWAN despite
an almost collision-free channel.
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Figure 4: FrameReceptionRatio (FRR) as function of the dis-
tance to a gateway for bicycle, car and stationary data sets.

We can observe another interesting aspect in this �gure, be-
cause the data sets are collected at di�erent moving speeds. Due
to Doppler shifts, it is expected that higher speeds will result in
higher frame loss although LoRa is claimed to be quite robust to
Doppler shifts [20]. However, the di�erence in frame loss between
data sets for a given distance is not highly signi�cant, especially
between the stationary and the bike data sets. The car data set
shows more loss, with a maximum di�erence of around 17%. From
this, we can conclude that the bike data set gives a lower bound on
the expected frame reception ratio for a stationary end-device at a
certain distance.

4.3 Burstiness
We analyse the frame loss pattern over time in LoRaWAN. While
some data sets exhibited uniform random erasures of frames, other
data sets showed more consecutive erasures than to the expecta-
tion for an IID erasure probability. This prompted us to look at the
burstiness of the erasures. Burstiness is a temporal property of the
channel. The channel shifts between poor and good states with a
correlation between frame delivery events. This results in erasures
being closer to each other for a bursty data stream compared to
a non-bursty data stream. While burstiness in wireless links has
been shown extensively, a metric to express burstiness is not stan-
dardised. We take a simple and e�ective measure of using the Hurst
exponent to quantify the burstiness [9].

In time-series analysis, the Hurst exponent is used as a measure
to indicate the long-term “memory” or the correlation between
events. In our case, the Hurst exponent, H , is used to measure if
the same set of events occur successively over a long-term. This
parameter, H , is also called the self-similarity parameter. A data
stream is said to be self-similar if it looks roughly the same on any
scale. Data streams with burstiness will show lower self-similarity
than data streams without burstiness.

In order to estimate H , we consider the variance-time plot [9].
That is, a plot of the variance of the sample mean X̄ of the data
stream for sub-series of length l . This can be expressed as,

Var(X̄l ) → αn2H−2, ∀α > 0. (2)

For a data stream of lengthm, the mean of sub-series j of length l
is given by,

X̄l (j ) =
1
l

(j+1)l∑
i=jl+1

Xi , j ∈ N[0,m/l ]. (3)
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Figure 5: Burstiness quanti�cation. (a) Variance-time plot
for four di�erent data sets. (b) Box plot showing burstiness
in the two di�erent data set types. There is more burstiness
in mobile (car and bike) data. median(Ĥstationary) = 0.56,
median(Ĥbike) = 0.6 and median(Ĥcar) = 0.77.

By plotting log(Var(X̄l )) against log(l ), as shown in Figure 5(a)
for four data sets, the self-similar parameter H can be estimated
(denoted by Ĥ ) by �tting a line to this plot and using the slope, β in

Ĥ = 1 +
β

2
. (4)

This value is between 0 and -1 since the slope, β is negative. Data
streams without burstiness show a Ĥ value of around 0.5. Data
streams with burstiness show larger values for Ĥ . In Figure 5(b) a
box plot of the calculated values for Ĥ for the di�erent type of data
sets (stationary and mobile) is shown.

We observe that the mobile data sets show on average more
burstiness than the stationary data. For both data set types there
are data sets that show burstiness. Burstiness in a mobile data set
is due to mobility, while burstiness in stationary data sets is the
result of channel e�ects.

Finding #2: Channel e�ects and mobility cause burstiness in
frame loss in LoRaWAN.

For the design of the data recovery method it is relevant to know
if burstiness occurs. When burstiness is present, the data recovery
method should spread the redundant information more over time.

4.4 Modelling the Erasure Channel
Around half of our data sets show uniform distributed frame loss.
So the erasure probability of a frame can be considered to be inde-
pendent and identically distributed (IID). A valid channel model
for these data sets is a Bernoulli channel model with erasure proba-
bility pe . We de�ne this as the default LoRaWAN communication
channel.

For the data sets that show burstiness we use the Gilbert Elliot
model, the most commonly used model for bursty erasure chan-
nels [7]. The Gilbert Elliot model is based on a Markov chain with
two states: a good state where there is no frame loss and a bad state
in which a frame is lost with probability ploss . The probability to
transit from the good state to the bad state is expressed with pGB ,
and the probability of transition from the bad state to the good state
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is expressed with pBG . The channel model has an average erasure
probability pe that can be calculated with

pe =
ploss

1 + pBG
pGB

. (5)

The parameters of the model to simulate the behaviour of this
data set can be determined empirically. For example, the empiri-
cally calculated Gilbert Elliot model parameters that describe the
burstiness of the car data are (pGB ,pBG ,ploss ) = (0.25, 0.21, 0.85).

5 DARE: DATA RECOVERY IN LORAWAN
Most applications of LoRaWAN use Class A mode in which the
end-device transmits its sensor data periodically but infrequently
using an ALOHA-like protocol. We de�ne the period of the sensor
reading equal to the period of transmission of its sensor data, or
“data unit”. This data is at the heart of the IoT applications. Since
frame loss leads to data loss, frame loss must be minimised as much
as possible.

In the previous section, we have demonstrated that the frames
transmitted over LoRaWAN can experience signi�cant frame loss.
Frame retransmission using acknowledgement schemes is possible
over LoRaWAN, but it cannot be employed for all frames due to sev-
eral reasons: (a) Gateways are expected to serve a large number of
devices, but can only serve a limited number of acknowledgements,
since gateways must obey the ISM-band duty cycle limit. Therefore,
acknowledgements over LoRaWAN are not scalable. (b) Even if a
work-around is used by employing other channels, retransmissions
are still not scalable since the number of collisions will increase
with the increasing number of devices. (c) If an acknowledgement
and ARQ mechanisms are employed at the end-devices, it is more
expensive in terms of energy for the end-devices.

This necessitates a solution to minimise data loss due to frame
loss without employing acknowledgements. There are several re-
quirements for such a solution: (a) Increase in transmissions must
be minimal so as to be scalable and have minimal overhead in terms
of energy. (b) No changes to the LoRaWAN speci�cations or net-
work should be needed such that the solution works on existing
applications as well. (c) The solution must be of low complexity at
the sending side, since the end-device is an embedded device with
limited computational and energy capabilities.

To this end, we propose a coding technique, called DaRe (Data
Recovery), that borrows from both fountain and convolutional cod-
ing techniques, and works at the application layer. Thus DaRe can
be employed for any application without changes to the LoRaWAN
protocol. In this section, we shall �rst give an overview of how
DaRe works before proceeding into its details.

5.1 DaRe - An Overview
For data recovery an existing data set should be extended with
redundant information, such that the original data set can be recov-
ered if only a subset of the transmitted data is received. LoRaWAN is
a packet erasure channel (frames are either received or completely
lost), so DaRe must spread the redundant information from the data
in one frame across other frames. That way, a lost frame can be
recovered using the redundant information from other frames.

Figure 6: A schematic explanation of DaRe. In this example,
R=1/2, W =4, ∆=0.75. The code words for the frame at time
instance t = 8 are calculated by concatenating the data units
from t = 8 and a parity check of previous data units from
t = 4, 5, 7.

In order not to disrupt the communication stream of an existing
LoRaWAN application, the moment a sensor reading is put in a
data unit it should be transmitted in a LoRaWAN frame. Redundant
information to be sent along in the frame can therefore only be com-
puted from previous data units. So DaRe calculates the redundant
information in a convolutional manner.

The redundant information included in a frame is a parity check
of randomly selected previous data units. This is similar to a foun-
tain code. A parity check is a vector of parity bits for each bit
position in the data units. Traditional fountain codes perform the
coding over a data block. But since we want the redundant infor-
mation to be calculated in a convolutional manner, we use a sliding
window approach with a �nite window.

Since we intend to keep the complexity low for embedded de-
vices, we work only with Galois Field 2 (GF(2)). This implies that
the multiplications and additions are bit-wise ‘AND’ and ‘XOR’
operations respectively.

When using DaRe, an end-device sends frames containing the
current data unit and redundant information. The amount of re-
dundant information is determined by the code rate R. The number
of previous data units is determined by the window size W and
the degree ∆. A schematic explanation of determining the frame
payload using DaRe is shown in Figure 6. The coding parameters
are explained more in detail in the following section.

The performance of DaRe can be expressed using the data recov-
ery ratio (DRR), de�ned as following:

DRR =
Number of data units recovered

Number of data units transmitted
. (6)

5.2 Coding Parameters
There are three parameters in the context of DaRe: code rate (R),
window size (W ) and degree (∆). We de�ne them and discuss their
in�uence on the coding scheme in this section.

5.2.1 Code rate. The code rate (R) is the ratio between the size
of original data and the size of the data actually transmitted. It ex-
presses the amount of redundant information added in transmission,
and is calculated with the following equation:
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R =
number of data bytes

number of transmitted data bytes
. (7)

If we have data units of sizey bytes, the size of the frame content
after adding the redundant information will be y/R. A lower valued
code rate is expected to provide more data recovery.

If the size of the data units, y, is one byte, the code rate can only
be of the form 1/(y + x ), where x is the number of redundant data
units appended to the frame. This is because the smallest unit that
can be easily processed on an embedded device is one byte. If y is
more than one byte, data units can be split into k fragments if y
is divisible by k . Then the code rate can be of the form k/(k + x ).
In this case the calculation of the parity checks is done on data
fragment level instead of data unit level. This allows for a higher
number of code rate values; including code rates higher than 1/2
making the transmitted frames smaller with some redundancy.

Since the code rate determines the size of a transmitted frame,
the code rate is limited by the maximum possible size of the frame.
In LoRaWAN, the maximum allowed frame content is 55 bytes in
SF12 and 222 bytes in SF7. The other spreading factors have a size
between these two extreme values.

5.2.2 Window Size. The window size (W ) expresses the number
of previous data units to consider for calculating the redundant
information. The window size is limited by the memory available
on the end-device. A larger window size will spread redundancy
for a single data unit over more frames, increasing the recovery
probability of this data unit. A larger window size will also increase
the maximum length of consecutive erasures that can be recovered.
However, increasing the window size will also increase the recovery
delay of the data unit.

5.2.3 Degree. The degree (∆) expresses the relative number of
previous data units from the selected window to include in the
parity check. For example, in a situation whereW =10 and ∆=0.5,
there will be 5 data units included in a parity check.

For DaRe we choose the degree to be constant over di�erent
parity checks. Speci�c fountain code implementations propose
a special degree distribution, but all these implementations are
patented [14, 18]. To stay out of the way of these patents, and to
keep the more research focused, the degree is kept constant.

The exact combination of data units in a parity check is picked
randomly for each parity check. This is done to eliminate the in�u-
ence of certain patterns in the selection. This leads to an average
result for all di�erent sequences of exact combinations.

We can compute an optimal value for the degree ∆ for a given
window sizeW . The optimal value means, for a given window size,
there exists a value of ∆ that o�ers the best recovery results. By
using this optimal value of ∆ in DaRe, we only need to input two
parameters for coding: the window sizeW and the code rate R.

The degree has a major in�uence on the performance of the
coding scheme. In Figure 7(a) the data recovery ratio (DRR) is
plotted for a �xed code rate and window size while varying the
degree, over channels with di�erent IID erasure probabilities. The
results are from simulations as described in Section 6. It can be seen
that a too low or a too high degree gives a lower DRR. With a degree
of 0, there is no redundant information so the data recovery ration
is equal to DRR = 1 − pe . For degree values close to 1, the recovery
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Figure 7: Determining optimal degree value ∆optimal.
(a) DRR for R=1/2 andW =10 for di�erent erasure probabil-
ities when varying ∆. The black crosses mark the lowest
values for ∆ that give the maximal DRR for di�erent era-
sure probabilities. The largest of these values is ∆optimal=0.4.
(b) ∆optimal for di�erent values for R andW . There is an ex-
ponential relation between ∆optimal andW . A relation with
rounded-o� �xed point coe�cients is chosen as implemen-
tation.

ratio decreases as well. For each value of pe there is a range for the
degree value that gives the maximum possible DRR. The lowest
value for ∆ that gives the maximum possible DRR for a speci�c pe
is ∆optimal (pe ) and is plotted as black crosses in Figure 7(a). The
value that gives the maximum possible DRR for all pe is ∆optimal.
For R=1/2 andW =10 the value for ∆optimal=0.4.

In Figure 7(b) the value for ∆optimal is plotted for di�erent W
and R. We can observe from the �gure that R does not in�uence
∆optimal, so ∆optimal is only subject toW . We can also observe from
the �gure that the optimal degree value ∆optimal and window size
W have an exponential relation plotted as “Best �t”.

In order to reduce the number of �oating point computations
for the embedded device, we round-o� the coe�cients of the re-
lation between W and ∆optimal to the closest �xed point binary
representation. Although the coe�cients are rounded-o�, the value
for ∆ still lies in the range that gives maximal recovery rates for all
erasure probabilities. The �xed point relationship is given by:

∆optimal (W ) =
( 1

2
+

1
22

)
exp

(
−

1
24W

)
+

1
22 , (8)

and is plotted in Figure 7(b) as “Implementation”.

5.3 Mathematical Framework
The framework presented here is a general framework to perform
application level erasure coding and is applicable for Galois Fields
higher than two as well. A glossary of symbols used in this section
is provided in Table 1.

Let d[t] represent data units generated at time instance t . All
generated data units are of equal size and are divisible in k data
fragments. By concatenating data units, we get the data setD[t] that
contains all generated data units previous to time instance t . D[t]
has maximum lengthW +1. Only the previousW previous data units
need to be stored to calculate the redundant information. At time
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Table 1: Glossary of symbols

Symbol Description

d[t ] Data unit at a given time instance t of size k data
fragments

D[t ] D[t ] = {d[τ ] | max(t −W − 1, 0) ≤ τ ≤ t }
c[t ] Coded data at a given time instance.

Gt
Generator matrix of time instance t describing relation
between D[t ] and C[t ]

D D = D[∞]
C C = {c[τ ] | 0 ≤ τ ≤ ∞}
H Matrix describing relation between D and C
C∗ The received coded data. C∗ = C ∪ ∗
H∗ Relation matrix describing relations between C∗ and D

instance t data unitd[t] is transmitted concatenated with redundant
information. This set is called c[t]. The redundant information is
a parity check, so it can be expressed as a linear combination of
previous data units with the following equation:

c[t] = D[t]Gt , (9)

where G is the generator matrix of size k × n, and n = k/R.
Let the set C be de�ned as a concatenation of all values of c[t],

and the set D be de�ned as the set of all data units, we can state
that,

C = DH, (10)
where,

H =



|

G1 |

| G2 |

| G3 |

| G4

|
. . .



(11)

Through the erasure channel some data will be lost. The decoder
receives only a subset of C . This gives a set C∗ ⊆ C of received
coded data. For each c[t] in C∗ the corresponding generator matrix
Gt should be retrievable. All these generator matrices can be con-
catenated into one matrix H∗ that contains the relations between
the data units at each time instance and the received code words.
If this matrix H∗ is invertible, all the data units can be recovered
using the following expression,

D = C∗ (H∗)−1. (12)

If H∗ is not invertible, not all data can be recovered. However,
the rank of matrix H∗ expresses the amount of unique data in the
matrix and is a metric for the amount of data that can theoretically
be recovered by the decoder.

5.4 DaRe in Mathematical Framework
The mathematical framework can be used to simulate DaRe by
describing a speci�c form of the generator matrix Gt . Since the
coding scheme is a systematic code, the �rst columns of the gen-
erator matrix should be an identity matrix in order to include the
fragments of the data unit d[t]. The other code words are parity
checks of previous data units.

This generator matrix for DaRe is of the form,

Gt,DaRe =

[
I 0
0 P

]
, (13)

where I is the identity matrix of size k × k . P is the parity check
matrix in which each of its n − k columns contain parity check
lines computed from randomly selected k∆ data fragments from a
window of kW data fragments.

5.5 Benchmark: Conventional Repetition
Coding

A simple form of frame redundancy is repetition, i.e. to append pre-
vious data units to a frame. This method provides some redundancy
and allows for recovery, but gives a lot of overhead. This method
can also be expressed in the proposed mathematical framework.
The generator matrix Gt would be time invariant and equal to an
identity matrix I of size n × n. We use this coding method as a
benchmark for DaRe. It provides a reference for the performance.

6 NUMERICAL RESULTS
We perform numerical simulations with the mathematical frame-
work in MATLAB to compare the performance of DaRe with the
conventional coding. The metric used for comparison is data re-
covery ratio as de�ned in Equation 6. We determine the results
for di�erent R andW over both IID and bursty channels. Figure 8
shows the results from these simulations.

The benchmark results from the conventional coding are shown
in Figure 8(a). It is intuitive that as the value for R decreases, DRR
improves. We observe that for a DRR of 0.99 and code rate of 1/2,
the maximum tolerable erasure probability is pe=0.1. Figure 8(b)
presents the results for DaRe for di�erent R values with W =80.
Compared with the benchmark, DaRe has higher recovery results.
With R=1/2, a DRR of 0.99 can be achieved up to pe=0.43. In Fig-
ure 8(c) the in�uence ofW on the DRR is plotted. With an increasing
window size we observe a higher DRR, but the improvement ob-
tained afterW =20 is quite insigni�cant. WithW =10 a DRR of 0.99
is achievable up to pe=0.27.

The results until now are with an IID erasure channel model.
In Figure 8(d) results for a bursty channel are presented. We use
the Gilbert Elliot model with parameters (pGB ,pBG ) = (0.25, 0.21),
while ploss is varied. The results are plotted for pe as de�ned in
Equation 5. A value of ploss = 0.85 describes burstiness similar to
the observed car data set. ForW =10, the maximum pe for DRR=0.99
is 0.27. There is not much di�erence in performance for larger
window sizes compared to Figure 8(c). Therefore, we can conclude
that DaRe can handle both bursty and non-bursty erasures equally
well.

7 PRACTICAL EVALUATION
In this section, we present implementation details for a DaRe en-
coder and decoder on an end-device and application server re-
spectively. Furthermore, we present a method that helps adapt the
parameters of DaRe on a real LoRaWAN network. Then we present
results and analyse from the implementation.

7.1 Implementation
In order to get DaRe working in real-life there are two challenges: (a)
The decoder must be able to construct the generator matrix similar
to the one used for encoding in order to decode the redundant
information, and (b) An algorithm is needed to recover previously
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Figure 8: Simulation results for DaRe. (a) DRR for conventional repetition coding, the baseline. (b) DRR for DaRewith di�erent
values of R andW =80. Higher values of R give better results. (c) DRR for DaRe with di�erent values ofW and R=1/2. Smaller
values ofW give better results up toW =20. (d) DRR for DaRe with di�erent values forW and R=1/2 for a Gilbert Elliot channel
model (pGB ,pBG ) = (0.25, 0.21) varying ploss and plotting for pe . pe=0.46 is comparable to the car data.

lost data units from successfully received frames. We describe the
aspects to solve these challenges.

7.1.1 Generator Matrix at Decoder. In DaRe coding, the parity
check lines with sizeW and degree ∆ are generated randomly. To
be able to decode, the decoder must know the randomly generated
parity check lines. This should not be sent on the LoRaWAN frame
due to the limited payload size and the energy constraints of the
device. We therefore compute the generator matrix on the end-
device using a pseudo-random number generator (PRNG), such
that the generator matrix can be reconstructed identically by the
decoder. The PRNG is seeded with the frame sequence number.

We use a linear feedback shift register to implement the PRNG.
The last loд2 (W ) bits of the shift register are a pseudo-random
number with a maximum value ofW − 1, which can be used as the
index pointing to the data unit to be included in the parity check.
By takingW∆ distinct numbers from the PRNG a pseudo-random
parity check line of sizeW and degree ∆ is generated.

7.1.2 Decoding Algorithm. We take our decoding strategy from
the traditional parity check decoding methods. The decoder works
in an iterative way as is explained in the �owchart in Figure 9. Each
time a frame is received, the data unit in this frame is stored and
the relation matrix H between the received parity checks and the
data units is constructed. Known data units are removed from the
matrix and Gaussian elimination is performed to remove linear
dependence from the matrix. If this reduced matrix has invertible
columns it means data units can be recovered from the matrix.
The relation matrix is again reduced until no more columns can
be inverted. If there is a leftover matrix, it is stored for the next
iteration.

7.1.3 LoRaWAN Payload Format for DaRe. The coding parame-
tersW and R will be sent in the payload of every frame along with
the coded data, as shown in Figure 10. We implement lookup tables
for all the possible values of R andW . Therefore, the end-device
only needs to send the indices to the values used in the lookup
tables for R andW . Since the number of entries in the tables are
limited, we require only four bits each for sending the indices ofW
and R.

Figure 9: The decoding algorithm visualised in a �owchart.
Data recovery is done by iteratively solving received parity
checks when a frame is received.

R  

1 Byte  

W  c[t] 

(k/R ) data units 

Figure 10: LoRaWAN payload format for DaRe.

7.1.4 Choosing and Adapting the Parameters. As explained in
Section 5.2, the two main parameters of DaRe, R and W , should
be chosen, and ∆ is pre-computed with the chosen value forW . R
and W are limited to the constraints set by the payload size and
end-device memory respectively. By using the results in Figure 8,
the parameter settings providing a desired DRR for the expected
erasure probability and burstiness can be determined.

A static choice of parameters may o�er varied data recovery
performance depending on the long term changes in the erasures of
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Figure 11: DRR for emulation of the implementation of
DaRe for di�erent window sizeW and R=1/2.
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Figure 12: DRR for emulation of the implementation of
DaRe for di�erent coding rates andW =32.

the channel. One way to adapt these parameters is to use a downlink
LoRaWAN frame to notify the end-device about the average channel
condition in the recent past. Typical LoRaWAN deployments also
know the device locations. The downlink frame may contain the
observed average erasures from the device and near-by devices in
the recent past allowing the end-device to dynamically adapt the
parameters in run-time to provide optimal performance for the new
circumstances.

7.2 Evaluation Results
We present results from evaluating our implementation of DaRe
on an IID channel that was emulated between the end-device and
the application server. Figure 11 shows the results for DRR for
various window sizes. The implementation gives lower recovery
rates compared to the simulation results in Figure 8(c), especially
for higher erasure probabilities. The di�erence is in the fact that
while there can be unique information in the relation between the
coded data and the data units, it does not mean all the data units
can be recovered. We see that largerW leads to decrease of DRR
faster at pe=0.5. However, for pe < 0.4, the results are comparable
to the simulation results. ForW =32, a DRR 0.99 is achieved up to
pe=0.4.

The maximum recovery results for di�erent values of the code
rate R are shown in Figure 12. It can be seen that the DRR increases
for smaller values of R, however the maximal erasure probability
to achieve a DRR of 0.99 is 4% lower compared to the simulation
results in Figure 8(b).

The iterative decoding approach introduces a delay in the recov-
ery of missed data units. Depending on the LoRaWAN application,
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bursty data sets. ‘Meas.’ is a data set acquired with the device
running DaRe.

delay can be a factor as well to determine the con�guration param-
eters. When more frames are lost a larger delay can be expected,
because more parity checks need to be received to get invertible
columns in H∗. While larger window sizes increase the DRR as
shown in Figure 11, the average time taken before a previously lost
data unit is recovered also increases as can be seen in Figure 13. For
higher loss of frames more unrecovered data leads to a lower aver-
age recovery delay, resulting in a bell-shaped curve. The maximum
average delay di�erence betweenW =16 and 32 is 2.8 frames.

7.3 Measurement Results
To evaluate DaRe for real-life data sets, we have (a) applied DaRe
to the previously collected data, and (b) performed some measure-
ments with the end-device running DaRe. In Figure 14 the DRR
is given for six data sets, �ve previously collected and one newly
collected with DaRe. In this �gure, the DRR is the observed data
recovery ratio and DRRemul is the expected data recovery ratio if
the data set has IID erasures. We conclude that the DRR is equal to
the expected DRR for non-bursty data sets, and a little lower for
bursty data sets.

Figure 15 shows a map of the DRR before and after DaRe coding
is applied to the previously collected bike data. While there was
14% data loss without DaRe, we see that this number reduces to 3%
with DaRe, illustrated by more green blocks in the �gure on the
right.
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(a) (b)

Figure 15: Geographical measurement results. (a) FRR for
the bike data without coding. pe=0.14. (b) DRR using DaRe
with R=1/2,W =8. pe=0.03. On a color scale from green to red
the frame loss is expressed. Green blocks indicate no loss
and red blocks indicate loss of all frames.
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Figure 16: Transmission time increase for a 10 byte data unit
for a desired DRR of 0.99, relative to the transmission time
for uncoded data transmission. DaRe provides signi�cant
transmission time reduction.

7.3.1 Additional Transmission Time. Adding redundancy in com-
munication, like with DaRe, requires transmitting more bytes. The
largest contributor to energy consumption on an end-device is the
frame transmission. Sending more bytes leads to signi�cantly more
energy consumption than additional computations. The impact of
DaRe on the energy consumption of the end-device can be deter-
mined by calculating the additional transmission time needed. The
air time of a LoRaWAN frame can be calculated using the formula
given in [21].

Figure 16 shows the ratio of transmission time for DaRe and
conventional coding when 99% data recovery is desired, compared
to the transmission time when sending data without coding. DaRe
reduces the additional transmission time compared to conventional
coding up to 42% for a data unit size of 10 bytes. Larger data unit
sizes will give even more transmission time reduction.

8 RELATEDWORK
In this section we brie�y discuss existing studies on LoRa, Lo-
RaWAN and erasure coding to position our work.

8.1 LoRaWAN
Bor et al. have done extensive studies on IoT radios [5]. They con-
cluded that LoRaWAN has larger communication ranges and other
interesting features over other solutions, such as SigFox, NB-IoT,
and Weightless. Centenaro et al. did a coverage test of LoRaWAN
in the urban environment of the Italian city of Padova [6], and
found a nominal coverage range of 1.2 km. Aref et al. reported on
the range of LoRa using di�erent physical layer con�gurations [1].
Petäjäjärvi et al. looked into the range of LoRaWAN [16] and ob-
served a maximum communication range of 15 km on ground and
close to 30 km on water. They also looked into LoRaWAN coverage
in indoor environments [17]. In their test setup a minimum of 96%
indoor frame reception rate was observed for distances up to 420 m.
Mikhaylov and Petäjäjärvi et al. looked more closely into the limits
of device and gateway throughput [13], giving the �rst insights on
LoRaWAN network performance.

Most recently, Augustin et al. did a very detailed study into the
properties of LoRa and LoRaWAN [2]. One of their �ndings is that
using con�rmed messages signi�cantly reduce the throughput in a
LoRaWAN network. They elaborate on properties of a LoRaWAN
network, however, there is still no literature on measurements of
LoRaWAN networks. Some measurements have been done on cov-
erage of a single gateway, but not multiple gateways. In this paper
we conducted measurements on a LoRaWAN network with multi-
ple gateways. Furthermore all measurements in related studies are,
hitherto, spatial measurements, mostly on coverage. In this paper
we conducted the �rst temporal analysis of LoRaWAN communica-
tion.

8.2 Erasure Coding
Erasure channels characterise and model communication channels,
describing how transmitted messages are either received, or erased.
In the context of LoRaWAN there is a frame erasure channel, where
complete frames are received or not. The erasure channel is di�erent
from the error channels, where messages are altered, but still the
frames are received.

In communication theory majorly two methods exist to deal
with erasures: Automatic Repeat reQuest (ARQ) and Forward Error
Correction (FEC). The former uses retransmissions to retrieve lost
data. With FEC messages are encoded in order to handle errors
in transmission. In our situation, since downlink communication
is expensive in LoRaWAN, FEC would be the best way of adding
robustness in LoRaWAN communication.

Erasure codes are FEC for an erasure channel. Erasure coding can
be found amongst others in distributed data storage, media stream-
ing, multicast communication and deep space communication. The
earliest erasure codes are Reed-Solomon codes [12]. However, these
are resource expensive to use for large data sets. In 1960, Gallager
developed the concept of Low-density parity-check codes (LDPC
codes). LDPC codes are used in, for instance, the new DVB-S2 stan-
dard [15]. With LDPC codes data blocks are supplemented with
parity bits before transmission. LDPC codes are block codes, where
data is encoded in blocks.

Next to block codes are convolutional codes, which add redun-
dancy via a sliding window instead of a data block. An example of
a convolutional code is the class of Turbo codes [4]. Turbo codes
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are iterative codes, where messages are sent along with parity bits
computed in a recursive manner. The messages are decoded in a
similar recursive way using soft decision.

Both LDPC and Turbo codes do error and erasure detection and
correction. However there are communication schemes where era-
sure detection is done separately. In Fountain codes error detection
is presumed given. Fountain codes were introduced by Luby [11, 12].
Code words are a linear combination of data fragments. At the de-
coder a random combination of as much linearly independent code
words as number of data fragments can be used to recover all data.
Examples of fountain codes are LT-codes [10] and Raptor codes [22].
With fountain codes the principle of rateless codes was also intro-
duced. Rateless codes can produce an in�nite number of code words,
instead of a �xed number of code words in rated codes. Fountain
codes are block codes, like LDPC codes.

Fountain codes provide a high level erasure resilience. Lost data
fragments can be recovered from any code word. This principle
could also be applied to a sliding window, making a convolutional
fountain code. While there has been done some work on combin-
ing fountain codes and convolutional codes [26], there is none on
applying fountain codes in a convolutional manner.

9 CONCLUSION
With many IoT applications on the rise, the number of IoT devices
is proliferating. To cater to the communication needs of this large
number of IoT applications, to collect data from these devices, new
architectures and protocols have been proposed recently. One such
protocol is LoRaWAN, a Low Power Wide Area Network (LPWAN)
technology. While LoRaWAN can provide a large coverage, its basic
operating mode cannot guarantee successful frame receptions due
to the unreliable wireless channel and absence of retransmission
schemes. In this paper we characterised frame loss in LoRaWAN.
We performed large scale measurements in an almost collision free
network deployment for di�erent scenarios. With the data sets,
we characterised frame loss in the network in terms of spatial and
temporal properties. We found that there is signi�cant frame loss.
Furthermore, we demonstrated the frame loss can be bursty in
nature even when a end-device is stationary.

Conventional wireless techniques such as using ACK for every
transmitted frame are withheld in LoRaWAN to provide scalability:
and to save transmission time on the gateways and also energy on
the end-devices. Thus, it is up to the application layer to guarantee
and increase the data reception. To this end, we propose a novel
erasure coding method, DaRe, that reduces data loss in LoRaWAN
signi�cantly. DaRe is based on applying fountain codes on a sliding
window. To simulate DaRe we described an algebraic framework.
We evaluated DaRe both with emulations and by implementing it
on an end-device. We achieved signi�cant recovery of 99% with a
code rate R=1/2 when channel erasure probability was 0.4. Compar-
ing with a naive repetition coding method, DaRe reduces energy
requirement up to a factor of 0.42. Further, we showed that DaRe
can lower an average data loss of 14% in 300 km of biking to 3%
data loss with R=1/2 andW =8.

Since the network is newly deployed, collisions are negligible.
When more devices start connecting to the network collisions will

start contributing signi�cantly to the overall frame loss in the net-
work. There will be an increased need for data recovery methods
that do not add much load to the network. Therefore, we believe that
DaRe provides a sustainable solution to improve the data through-
put in LoRaWAN.
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